开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Jingwen · 2022年03月23日

关于Sf的解释

* 问题详情,请 查看题干

NO.PZ202109130200004502

问题如下:

Doug Abitbol is a portfolio manager for Polyi Investments, a hedge fund that trades in the United States. Abitbol manages the hedge fund with the help of Robert Olabudo, junior portfolio manager.

Abitbol looks at economists' inflation forecasts and would like to examine the relationship between the US Consumer Price Index (US CPl) consensus forecast and the actual US CPI using regression analysis. Olabudo estimates regression coefficients to test whether the consensus forecast is unbiased. If the consensus forecasts are unbiased, the intercept should be 0.0 and the slope will be equal to 1.0. Regression results are presented in Exhibit 1. Additionally, Olabudo calculates the 95% prediction interval of the actual CPI using a US CPI consensus forecast of 2.8.


Finally, Abitbol and Olabudo discuss the forecast and forecast interval:

Observation 1 For a given confidence level, the forecast interval is the same no matter the US CPI consensus forecast.

Observation 2 A larger standard error of the estimate will result in a wider confidence interval.


Based on Exhibit 1, Olabudo should calculate a prediction interval for the actual US CPI closest to:

选项:

A.2.7506 to 2.7544 B.2.7521 to 2.7529 C.2.7981 to 2.8019

解释:

A is correct. The forecast interval for inflation is calculated in three steps:

Step 1. Make the prediction given the US CPI forecast of 2.8:

Y^=b0+b1X=0.0001+(0.9830×2.8)=2.7525{\rm{\hat Y=}}{{\rm{b}}_{\rm{0}}}{\rm{+}}{{\rm{b}}_{\rm{1}}}{\rm{X = 0}}{\rm{.0001+(0}}{\rm{.9830}}\times{\rm{2}}{\rm{.8)=2}}{\rm{.7525}}

Step 2. Compute the variance of the prediction error:

sf2=se2{1+(1/n)+[(XfXˉ)2]/[(n1)×sx2]}s_f^2=s_e^2\left\{{1+(1/n)+[{{({X_f}-\bar X)}^2}]/[(n-1)\times s_x^2]}\right\}

sf2=0.0009e2{1+(1/60)+[(2.81.3350)2]/[(601)×0.75392]}s_f^2=0.0009_e^2\left\{{1+(1/60)+[{{(2.8-1.3350)}^2}]/[(60-1)\times{{0.7539}^2}]}\right\}

sf2=0.00000088s_f^2=0.00000088

sf=0.0009{s_f}=0.0009

Step 3. Compute the prediction interval:

Y^±tc×sf\hat Y\pm{t_c}\times{s_f}

2.7525±(2.0 x 0.0009)

Lower bound: 2.7525 - (2.0 x 0.0009) = 2.7506.

Upper bound: 2.7525 + (2.0 x 0.0009) = 2.7544.

So, given the US CPI forecast of 2.8, the 95% prediction interval is 2.7506 to 2.7544.

老师,关于公式里的Sf,我想再确认一下。

这个Sf,是prediction error,理应用这个很复杂的公式计算出来的。

但是当n特别大的时候,就会是约等于standard error of estimate。

所以在这道题目中,用到了复杂的公式进行计算,但是其实题目中也给出了standard error of estimate为0.0009,其实和step 2计算出来是一样的。


然后题目里面的critical value,应该用的是2.002吧?解答里计算的时候就直接用2.0了是嘛?

1 个答案

星星_品职助教 · 2022年03月24日

同学你好,

Sf并不是每次都等于SEE的,所以还是需要代入这个长公式进行计算。

critical value应该用2.002比较准确一些。