NO.PZ2020010301000002
问题如下:
Can Bayes’ rule be helpful if A and B are independent? What if A and B are perfectly dependent so that B is a subset of A?
解释:
Bayes’ rule says that Pr(A|B) =Pr(B|A)Pr(A) /Pr(B)
If these events are independent, then Pr(B|A) = Pr(B) so that Pr(A|B) = Pr(A). B has no information about A and so updating with Bayes’ rule never changes the conditional probability.
If these events are perfectly dependent, then Pr(B|A) = 1, so that Pr(A|B) is just the ratio of the probabilities, Pr(A)/Pr(B).
Here the probability also only depends on unconditional probabilities and so never changes.
贝叶斯公式: Pr(A|B) =Pr(B|A)Pr(A) /Pr(B)
如果A和B事件是独立的,则 Pr(B|A) = Pr(B),因此 Pr(A|B) = Pr(A)。 A和B互相不包含彼此的信息,因此以上的条件概率带入之后,贝叶斯公式还是成立的。
如果A和B事件完全相关,则 Pr(B|A) = 1,因此 Pr(A|B) 就是概率之比,Pr(A)/Pr(B),贝叶斯公式依旧成立。
B是A的子集,P(A|B)才是等于1吧答案有误?