开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

徐威廉 · 2021年10月20日

关于target MV

NO.PZ2018113001000005

问题如下:

The equity portfolio has a market value of $6,000,000, The pension fund plans to use a futures contract priced at $250,000 in order to increase the beta from 0.9 to 1.2 for the period of one month. The futures contract has a beta of 0.95. One months later, the return of equity market is 5%, the market value of equity portfolio is $6,250,000, the price of futures contract is $262,000.

The effective beta of the equity portion of the fund is closest to:

选项:

A.

1.15.

B.

1.20

C.

1.05

解释:

A is correct.

考点:计算effective beta

解析:

将beta从0.9调整为1.2需要的合约数量为:

Nf=(βTβSβS)(Sf)=(1.20.90.95)($6,000,000$250,000)=7.58N_f=(\frac{\beta_T-\beta_S}{\beta_S})(\frac Sf)=(\frac{1.2-0.9}{0.95})(\frac{\$6,000,000}{\$250,000})=7.58

因此,需要买入8份期货合约。

一个月之后:

期货合约所带来的利润=8×(262,000-250,000)=$96,000

股票组合的市场价值变为6,250,000,加上期货合约的收益可以得到整个头寸的价值=$6,250,000+$96,000=$6,346,000,

整个头寸的收益=$6,346,000/$6,000,000-1=0.0577

又因为市场的收益率为5%,而组合的收益率为5.77%,所以组合的有效贝塔为:

0.0577/0.05=1.154

6m的股票需要把他的贝塔从0.9调到1.2,公式如下6m*0.9+Nf*250000*0.95=1.2*6.25m 关于这个6.25m为什么题目用的还是6m?已经到了一个月以后了啊
2 个答案

Hertz_品职助教 · 2021年10月20日

嗨,爱思考的PZer你好:


同学你好

看一下题干哈,这个equity portfolio的MV=6million,然后这个基金要用futures来将其β从0.9调至1.2.所以需要改变β的头寸就是这6个million。然后此时我们签订期货合约来调整,此时的头寸就是6million。

6.25million是后来这个equity portfolio的价值,跟我我们调整β的过程毫无关系的呀。

然后咱们二级衍生学习的内容是各类衍生品的定价和估值,没有调β的内容哈

----------------------------------------------
加油吧,让我们一起遇见更好的自己!

徐威廉 · 2021年10月21日

sorry its my fault,all night working got me frustrated!

Hertz_品职助教 · 2021年10月20日

嗨,努力学习的PZer你好:


同学你好~

我们先来说一下β和effective β

1.    beta的意思是说当大盘变动1%,我们手里的头寸变化多少。当我们头寸就是stock portfolio时,我们一般就称他为beta了;但是当我们的头寸既包括了股票又包括了futures时,就像本题,我们就叫做effective beta了。(同学做题的时候也应该发现了:一般让我们求effective beta的时候,我们的portfolio一般都是包括了futures的,但其实beta还是那个beta,就是换了个称呼,都是在说大盘变动1%,自己手里的组合变动多少嘛)

2.    Effective beta的计算还是挺重要的,同时它的思路也是固定的,就是求出total portfolio的return,然后和大盘的比较来求得。所以我们重点就在求portfolio 的return了。组合的return是可以分equity和futures两部分来求。按照这样的思路就可以求得effective beta啦

然后我们来说一下你的问题哈

1.     这个问题其实和你刚才有一道提问是一样的道理的哈,用futures来调整β的时候,必须保证公式βT×S=βS×S + βf×F×Nf中,左右两边都是S,在你列出的这个式子中就是都应该是6million。

2. 然后通过这个式子求解出了需要多少分期货合约后,就可以计算期货合约带来的收益是多少;

3. 这个6.25million是我们的equity头寸上涨后的价值,这个数字减掉6million是equity部分获得的收益;

4. 然后将期货头寸和equity头寸得到的收益相加就是整体头寸的收益了(绝对值)。

5. 最后再求解一下整体头寸收益的百分比形式,然后和大盘上涨的5%比较一下,就得到了effective β啦。

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

徐威廉 · 2021年10月20日

effective β我理解,但是我还是不能明白为什么要用6m不能用6.25m?我记得二级调β的时候target market value好像就和初始market value不一样

  • 2

    回答
  • 0

    关注
  • 392

    浏览
相关问题

NO.PZ2018113001000005 问题如下 The equity portfolio ha market value of $6,000,000, The pension funplans to use a futures contraprice$250,000 in orr to increase the beta from 0.9 to 1.2 for the perioof one month. The futures contraha beta of 0.95. One months later, the return of equity market is 5%, the market value of equity portfolio is $6,250,000, the priof futures contrais $262,000. The effective beta of the equity portion of the funis closest to: 1.15. 1.20 1.05 A is correct.考点计算effective beta解析将beta从0.9调整为1.2需要的合约数量为Nf=(βT−βSβS)(Sf)=(1.2−0.90.95)($6,000,000$250,000)=7.58N_f=(\frac{\beta_T-\beta_S}{\beta_S})(\frSf)=(\frac{1.2-0.9}{0.95})(\frac{\$6,000,000}{\$250,000})=7.58Nf​=(βS​βT​−βS​​)(fS​)=(0.951.2−0.9​)($250,000$6,000,000​)=7.58因此,需要买入8份期货合约。一个月之后期货合约所带来的利润=8×(262,000-250,000)=$96,000股票组合的市场价值变为6,250,000,加上期货合约的收益可以得到整个头寸的价值=$6,250,000+$96,000=$6,346,000,整个头寸的收益=$6,346,000/$6,000,000-1=0.0577又因为市场的收益率为5%,而组合的收益率为5.77%,所以组合的有效贝塔为0.0577/0.05=1.154 为什么期货的期初成本是0?

2024-09-08 14:55 1 · 回答

NO.PZ2018113001000005 问题如下 The equity portfolio ha market value of $6,000,000, The pension funplans to use a futures contraprice$250,000 in orr to increase the beta from 0.9 to 1.2 for the perioof one month. The futures contraha beta of 0.95. One months later, the return of equity market is 5%, the market value of equity portfolio is $6,250,000, the priof futures contrais $262,000. The effective beta of the equity portion of the funis closest to: 1.15. 1.20 1.05 A is correct.考点计算effective beta解析将beta从0.9调整为1.2需要的合约数量为Nf=(βT−βSβS)(Sf)=(1.2−0.90.95)($6,000,000$250,000)=7.58N_f=(\frac{\beta_T-\beta_S}{\beta_S})(\frSf)=(\frac{1.2-0.9}{0.95})(\frac{\$6,000,000}{\$250,000})=7.58Nf​=(βS​βT​−βS​​)(fS​)=(0.951.2−0.9​)($250,000$6,000,000​)=7.58因此,需要买入8份期货合约。一个月之后期货合约所带来的利润=8×(262,000-250,000)=$96,000股票组合的市场价值变为6,250,000,加上期货合约的收益可以得到整个头寸的价值=$6,250,000+$96,000=$6,346,000,整个头寸的收益=$6,346,000/$6,000,000-1=0.0577又因为市场的收益率为5%,而组合的收益率为5.77%,所以组合的有效贝塔为0.0577/0.05=1.154 请问effective beta在哪里讲过呢,这个题算不算超纲?

2024-01-13 11:29 1 · 回答

NO.PZ2018113001000005 问题如下 The equity portfolio ha market value of $6,000,000, The pension funplans to use a futures contraprice$250,000 in orr to increase the beta from 0.9 to 1.2 for the perioof one month. The futures contraha beta of 0.95. One months later, the return of equity market is 5%, the market value of equity portfolio is $6,250,000, the priof futures contrais $262,000. The effective beta of the equity portion of the funis closest to: 1.15. 1.20 1.05 A is correct.考点计算effective beta解析将beta从0.9调整为1.2需要的合约数量为Nf=(βT−βSβS)(Sf)=(1.2−0.90.95)($6,000,000$250,000)=7.58N_f=(\frac{\beta_T-\beta_S}{\beta_S})(\frSf)=(\frac{1.2-0.9}{0.95})(\frac{\$6,000,000}{\$250,000})=7.58Nf​=(βS​βT​−βS​​)(fS​)=(0.951.2−0.9​)($250,000$6,000,000​)=7.58因此,需要买入8份期货合约。一个月之后期货合约所带来的利润=8×(262,000-250,000)=$96,000股票组合的市场价值变为6,250,000,加上期货合约的收益可以得到整个头寸的价值=$6,250,000+$96,000=$6,346,000,整个头寸的收益=$6,346,000/$6,000,000-1=0.0577又因为市场的收益率为5%,而组合的收益率为5.77%,所以组合的有效贝塔为0.0577/0.05=1.154 题目已经告诉了市场的收益率是5%了,又说股票市值达到6250,这个逻辑在哪?认可6250,股票收益率是4.167% ;认可收益率是5%,股票市值应该为6300??

2023-10-18 23:00 1 · 回答

NO.PZ2018113001000005 问题如下 The equity portfolio ha market value of $6,000,000, The pension funplans to use a futures contraprice$250,000 in orr to increase the beta from 0.9 to 1.2 for the perioof one month. The futures contraha beta of 0.95. One months later, the return of equity market is 5%, the market value of equity portfolio is $6,250,000, the priof futures contrais $262,000. The effective beta of the equity portion of the funis closest to: 1.15. 1.20 1.05 A is correct.考点计算effective beta解析将beta从0.9调整为1.2需要的合约数量为Nf=(βT−βSβS)(Sf)=(1.2−0.90.95)($6,000,000$250,000)=7.58N_f=(\frac{\beta_T-\beta_S}{\beta_S})(\frSf)=(\frac{1.2-0.9}{0.95})(\frac{\$6,000,000}{\$250,000})=7.58Nf​=(βS​βT​−βS​​)(fS​)=(0.951.2−0.9​)($250,000$6,000,000​)=7.58因此,需要买入8份期货合约。一个月之后期货合约所带来的利润=8×(262,000-250,000)=$96,000股票组合的市场价值变为6,250,000,加上期货合约的收益可以得到整个头寸的价值=$6,250,000+$96,000=$6,346,000,整个头寸的收益=$6,346,000/$6,000,000-1=0.0577又因为市场的收益率为5%,而组合的收益率为5.77%,所以组合的有效贝塔为0.0577/0.05=1.154 这里算整个头寸收益的时候,为什么不在分母加上买期货的成本?

2023-09-04 11:44 1 · 回答

NO.PZ2018113001000005 问题如下 The equity portfolio ha market value of $6,000,000, The pension funplans to use a futures contraprice$250,000 in orr to increase the beta from 0.9 to 1.2 for the perioof one month. The futures contraha beta of 0.95. One months later, the return of equity market is 5%, the market value of equity portfolio is $6,250,000, the priof futures contrais $262,000. The effective beta of the equity portion of the funis closest to: 1.15. 1.20 1.05 A is correct.考点计算effective beta解析将beta从0.9调整为1.2需要的合约数量为Nf=(βT−βSβS)(Sf)=(1.2−0.90.95)($6,000,000$250,000)=7.58N_f=(\frac{\beta_T-\beta_S}{\beta_S})(\frSf)=(\frac{1.2-0.9}{0.95})(\frac{\$6,000,000}{\$250,000})=7.58Nf​=(βS​βT​−βS​​)(fS​)=(0.951.2−0.9​)($250,000$6,000,000​)=7.58因此,需要买入8份期货合约。一个月之后期货合约所带来的利润=8×(262,000-250,000)=$96,000股票组合的市场价值变为6,250,000,加上期货合约的收益可以得到整个头寸的价值=$6,250,000+$96,000=$6,346,000,整个头寸的收益=$6,346,000/$6,000,000-1=0.0577又因为市场的收益率为5%,而组合的收益率为5.77%,所以组合的有效贝塔为0.0577/0.05=1.154 如果这个题没有告诉 the market value of equity portfolio is $6,250,000,让求?怎么求?6000000x(1+betax5%),是不是应该用这个方法求解?那这里面的贝塔 选哪个呢?

2023-05-20 09:34 2 · 回答