开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

506623496 · 2021年09月28日

C方法1和讲义上的方法2

NO.PZ2016031101000007

问题如下:

A European equity composite contains three portfolios. For convenience, the cash flow weighting factors are presented below.

A. Calculate the returns of Portfolio A, Portfolio B, and Portfolio C for the month of August using the Modified Dietz formula.

B. Calculate the August composite return by asset-weighting the individual portfolio returns using beginning-of-period values.

C. Calculate the August composite return by asset-weighting the individual portfolio returns using a method that reflects both beginning-of-period values and external cash flows.

选项:

解释:

A.

Portfolio returns:

lrA=85.374.97.574.9+(7.5×0.613)=2.979.5=0.0365=3.65%{l}r_A=\frac{85.3-74.9-7.5}{74.9+(7.5\times0.613)}=\frac{2.9}{79.5}=0.0365=3.65\%\\

rB=109.8127.6(15)(5)127.6+(15×0.742)+(5×0.387)=2.2114.535=0.0192=1.92%r_B=\frac{109.8-127.6-(-15)-(-5)}{127.6+(-15\times0.742)+(-5\times0.387)}=\frac{2.2}{114.535}=0.0192=1.92\%

rC=128.4110.415110.4+(15×0.387)=3116.205=0.0258=2.58%r_C=\frac{128.4-110.4-15}{110.4+(15\times0.387)}=\frac3{116.205}=0.0258=2.58\%

B.

To calculate the composite return based on beginning assets, first determine the percent of beginning composite assets represented by each portfolio; then determine the weighted-average return for the month:

Beginning composite assets = 74.9 + 127.6 + 110.4 = 312.9

Portfolio A = 74.9/312.9 = 0.239 = 23.9%

Portfolio B = 127.6/312.9 = 0.408 = 40.8%

Portfolio C = 110.4/312.9 = 0.353 = 35.3%

                              lrComp=(0.0365×0.239)+(0.0192×0.408)+(0.0258×0.353)=0.0257=2.57%{l}r_{Comp}=(0.0365\times0.239)+(0.0192\times0.408)+(0.0258\times0.353)\\=0.0257=2.57\%

C.

To calculate the composite return based on beginning assets plus cash flows, first use the denominator of the Modified Dietz formula to determine the percentage of total beginning assets plus weighted cash flows represented by each portfolio, and then calculate the weighted-average return:

Beginning composite assets + Weighted cash flows = [74.9 + (7.5 × 0.613)] + [127.6 + (–15 × 0.742) + (–5×0.387)] + [110.4 + (15 × 0.387)] = 79.5 + 114.535 + 116.205 = 310.24

Portfolio A = 79.5/310.24 = 0.256 = 25.6%

Portfolio B = 114.535/310.24 = 0.369 = 36.9%

Portfolio C = 116.205/310.24 = 0.375 = 37.5%

lrComp=(0.0365×0.256)+(0.0192×0.369)+(0.0258×0.375)=0.0261=2.61%{l}r_{Comp}=(0.0365\times0.256)+(0.0192\times0.369)+(0.0258\times0.375)\\=0.0261=2.61\%

A mathematically equivalent method consists simply in summing beginning assets and intra-period external cash flows, treating the entire composite as though it were a single portfolio and then computing the return directly with the Modified Dietz formula.

lrComp=323.5312.9(15+7.5+10)312.9+[(15)×0.742+7.5×0.613+10×0.387]=0.0261=2.61%{l}r_{Comp}=\frac{323.5-312.9-(-15+7.5+10)}{312.9+\lbrack(-15)\times0.742+7.5\times0.613+10\times0.387]}\\=0.0261=2.61\%

C方法1和讲义P48的方法2,都是beginning market + CF方法吗?如果问这种方法是不是采取本题C的方法1更简单?

1 个答案

伯恩_品职助教 · 2021年09月28日

嗨,爱思考的PZer你好:


和这个是一样的,但是我讲义是47页。。。

嗯,本质是一样的,用你觉得简单的就行

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!