开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Murasaki · 2021年09月23日

drift term的计算不懂

NO.PZ2016062402000027

问题如下:

Suppose you simulate the price path of stock HHF using a geometric Brownian motion model with drift μ = 0, volatility σ = 0.14, and time step Δ = 0.01. Let StS_t be the price of the stock at time t. If S0S_0 = 100, and the first two simulated (randomly selected) standard normal variables are ε1\varepsilon_1 = 0.263 and ε2\varepsilon_2 = -0.475, what is the simulated stock price after the second step?

选项:

A.

96.79

B.

99.79

C.

99.97

D.

99.70

解释:

The process for the stock prices has mean of zero and volatility of σt=0.14×0.01=0.014\sigma\sqrt{\bigtriangleup t}=0.14\times\sqrt{0.01}=0.014, Hence the first step is S1=S0(1+0.014×0.263)=100.37S_1=S_0{(1+0.014\times0.263)}=100.37. The second step is S2=S1(1+0.014×0.475)=99.70S_2=S_1{(1+0.014\times-0.475)}=99.70

drift term的计算不懂,题目中给的0,为啥计算机过程中显示1?

1 个答案
已采纳答案

DD仔_品职助教 · 2021年09月23日

嗨,努力学习的PZer你好:


同学你好~

drift term是0,所以drift那一部分答案写的就是等于0的。

这个是公式:

dz=σ*ε

答案写的是:


也只有后面包含波动率的这一部分。


题目计算里写的1其实是把公式整合了

S1=S0+dS0=S0+S0*σ*dz=S0*(1+0.014*ε1

S2计算同理也是整合的

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

  • 1

    回答
  • 0

    关注
  • 1413

    浏览
相关问题

NO.PZ2016062402000027问题如下 Suppose you simulate the pripath of stoHHF using a geometric Brownimotion mol with ift μ = 0, volatility σ = 0.14, antime step Δ = 0.01. Let StS_tSt​ the priof the stotime t. If S0S_0S0​ = 100, anthe first two simulate(ranmly selecte stanrnormvariables are ε1\varepsilon_1ε1​ = 0.263 anε2\varepsilon_2ε2​ = -0.475, whis the simulatestopriafter the seconstep?96.79 99.79 99.97 99.70 The process for the stoprices hmeof zero anvolatility of σ△t=0.14×0.01=0.014\sigma\sqrt{\bigtriangleup t}=0.14\times\sqrt{0.01}=0.014σ△t​=0.14×0.01​=0.014, Henthe first step is S1=S0(1+0.014×0.263)=100.37S_1=S_0{(1+0.014\times0.263)}=100.37S1​=S0​(1+0.014×0.263)=100.37. The seconstep is S2=S1(1+0.014×−0.475)=99.70S_2=S_1{(1+0.014\times-0.475)}=99.70S2​=S1​(1+0.014×−0.475)=99.70请问这道题是哪个知识点

2022-11-18 15:22 4 · 回答

NO.PZ2016062402000027问题如下Suppose you simulate the pripath of stoHHF using a geometric Brownimotion mol with ift μ = 0, volatility σ = 0.14, antime step Δ = 0.01. Let StS_tSt​ the priof the stotime t. If S0S_0S0​ = 100, anthe first two simulate(ranmly selecte stanrnormvariables are ε1\varepsilon_1ε1​ = 0.263 anε2\varepsilon_2ε2​ = -0.475, whis the simulatestopriafter the seconstep? 96.79 99.79 99.97 99.70 The process for the stoprices hmeof zero anvolatility of σ△t=0.14×0.01=0.014\sigma\sqrt{\bigtriangleup t}=0.14\times\sqrt{0.01}=0.014σ△t​=0.14×0.01​=0.014, Henthe first step is S1=S0(1+0.014×0.263)=100.37S_1=S_0{(1+0.014\times0.263)}=100.37S1​=S0​(1+0.014×0.263)=100.37. The seconstep is S2=S1(1+0.014×−0.475)=99.70S_2=S_1{(1+0.014\times-0.475)}=99.70S2​=S1​(1+0.014×−0.475)=99.70 老师您好,如果u不等于0,怎么求?t = u*S*+Starviation * St*

2022-04-14 02:13 1 · 回答

请问,本题中的波动率是什么时间跨度?t=0.01是什么时间跨度?

2019-09-20 22:38 1 · 回答

有对应的课件页数和截图吗?没找到呀

2019-04-14 21:46 1 · 回答