开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Elyse Guo · 2021年07月31日

求variance时的weights

NO.PZ2020010302000010

问题如下:

Suppose the return on an asset has the following distribution:

a. Compute the mean, variance, and standard deviation.

b. Verify your result in (a) by computing E[X2]E[X^2] directly and using the alternative expression for the variance.

c. Is this distribution skewed?

d. Does this distribution have excess kurtosis? e. What is the median of this distribution?

选项:

解释:

a. The mean is E[X] = Σx Pr(X = x) = 0.25%.

The variance is Var[X]=Σ(xE[X])2Pr(X=x)=0.000555Var[X] = Σ(x - E[X])^2 Pr(X = x) = 0.000555.

The standard deviation is Var[X]=2.355\sqrt {Var[X]} = 2.355%.

b. E[X2]=Σx2Pr(X=x)=.000561E[X^2] = Σx^2 Pr(X = x) = .000561 and so E[X2](E[X])2=0.000561(.0025)2=.000555E[X^2] - (E[X])^2 = 0.000561 - (.0025)^2 = .000555, which is the same.

c. The skewness requires computing

skew(X)=E[XE[X]]3/σ3=E[(Xμσ)3]=Σ(xμσ)3Pr(Xx)skew(X)=E[X-E[X]]^3/{\sigma^3}=E[(\frac{X-\mu}{\sigma})^3]=Σ(\frac{x-\mu}{\sigma})^3Pr(X-x)

Thus the skewness is 0.021, and the distribution has a mild positive skew.

d. The kurtosis requires computing

kurtosis(X)=E[(XE[X])4]σ4=E[(Xμσ)4]=Σ(xμσ)4Pr(Xx)kurtosis(X)=\frac{E[(X-E[X])^4]}{\sigma^4}=E[(\frac{X-\mu}{\sigma})^4]=Σ(\frac{x-\mu}{\sigma})^4Pr(X-x)

Thus the kurtosis is 2.24. The excess kurtosis is then 2.24 - 3 = -0.76. This distribution does not have excess kurtosis.

e. The median is the value where at least 50% probability lies to the left, and at least 50% probability lies to the right. Cumulating the probabilities into a CDF, this occurs at the return value of 0%.

讲义40页中Var(aX)=a^2Var(X),遇见constant number a求Var是要平方的,可是为什么好几道题里面给prob(X)=a

E(X)=b,之后算Var的时候引入weights Prob(X)都没有平方而是直接乘以了weights呢?

4 个答案

品职答疑小助手雍 · 2021年08月07日

方差的定义公式是用数列里的每个数字减去数列均值的平方和的平均数。数列里默认了每个数字的概率是一样的。当出现了数字概率不同的情况的时候,是用每个数字对应的概率*数字减期望的平方,加和起来即可。

即一个1,2的数列的方差就是50%*(1-1.5)^2+50%*(2-1.5)^2=0.25。概率是不需要平方的。

讲义40页Var(aX)=a^2Var(X)里的a不是权重,是一个常数。指的是一个数列里的数字都乘以了a倍,a=2时上述举例的数列就变成了2,4,这样算方差就变成了50%*(2-3)^2+50%*(4-3)^2=1,也就是之前数列方差的a平方倍。

Tina · 2022年03月13日

喜欢这位老师,讲得清楚,易混淆的概念也分辨地特别,明白

品职答疑小助手雍 · 2021年08月02日

你也说了你只听了16个小时的课,即使在大学时候已经把方差这个高中学过的概念遗忘了,如果听到相关的课程的话也应该能回忆起来。只能说明对于这个概念,你还没有听过课(或者听过了没有理解)。

我不想对你说我回答粗糙或者不成熟什么的提出什么争辩,依旧还是建议你把方差这个概念的知识点听一下课程,不管是为了学习还是复习。

而我已经在回答中明确描述了方差的概念也解答了你提问中存在的问题,也根据你的提问提出了学习的建议,你可以不听但是不用judge我,谢谢,以上。


Elyse Guo · 2021年08月02日

Likewise - Don't judge too quickly is also my one and only suggestion to you. 您的解答,比如,“依照公式就好了”并没有解答到我的问题。我的问题,归根结底,是prob可否当作weights。学生付费来上课,是希望每一个问题,有专业的解答 - 而不是不负责任的推断和judge一些无关信息。如果每个人按照你说的回去看公式就好了不需要提问和解答,那么大家也没必要过来报班,这个有问必答也可以取消了。建议是,回答问题再专业一点,计算过程多解释,其他的推断别人如何学习,学到什么程度,真的大可不必多加评论了。 G'nite.

品职答疑小助手雍 · 2021年08月02日

嗨,努力学习的PZer你好:


这个问题本身问的是方差的定义公式,但是你举的讲义的例子是关于生成新数列的方差的一个结论,是两回事。

我看了下你提问的问题类型,感觉是对基础知识没有理解导致的,基础班可能也听完了,但是对概念的理解却出现了偏差,听课的时候不用追求倍速有多快,主要还是要去理解这些知识点,尤其是比较重要的概念,不能只是单纯的记忆(不理解的记忆可能会因为别的概念的引入导致原有的记忆产生偏差)。

当然如果课上老师说了有些不是很重要的点可以了解一下略过。

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

Elyse Guo · 2021年08月02日

Well, it is really unnecessary to make a generalized statement and prediction through the past questions. A rough and one-sided statement shows the immatureness of thinking: I only studied 16 hours until now. I did exercises while learning. Anyways, thanks for your feedback.

品职答疑小助手雍 · 2021年07月31日

嗨,爱思考的PZer你好:


你说的完全不是一个东西。而且我之前的提问里也说过,你的这些提问里不存在weight这个含义的东西,只有概率。

这些题里你问的计算过程是方差定义的计算过程。

讲义里的意思是给了一串数字,求出来方差是一个值X,那么这串数字全都乘以a以后,新的数列的方差就是X的a平方倍。这是个结论。(你按上面定义计算的结果会符合这个结论。)

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

  • 4

    回答
  • 0

    关注
  • 583

    浏览
相关问题

NO.PZ2020010302000010问题如下Suppose the return on asset hthe following stribution:Compute the mean, variance, anstanrviation.Verify your result in (computing E[X2]E[X^2]E[X2] rectly anusing the alternative expression for the variance.Is this stribution skewe es this stribution have excess kurtosis? e. Whis the meof this stribution?The meis E[X] = Σx Pr(X = x) = 0.25%.The varianis Var[X]=Σ(x−E[X])2Pr(X=x)=0.000555Var[X] = Σ(x - E[X])^2 Pr(X = x) = 0.000555Var[X]=Σ(x−E[X])2Pr(X=x)=0.000555.The stanrviation is Var[X]=2.355\sqrt {Var[X]} = 2.355%Var[X]​=2.355.E[X2]=Σx2Pr(X=x)=.000561E[X^2] = Σx^2 Pr(X = x) = .000561E[X2]=Σx2Pr(X=x)=.000561 anso E[X2]−(E[X])2=0.000561−(.0025)2=.000555E[X^2] - (E[X])^2 = 0.000561 - (.0025)^2 = .000555E[X2]−(E[X])2=0.000561−(.0025)2=.000555, whiis the same.The skewness requires computingskew(X)=E[X−E[X]]3/σ3=E[(X−μσ)3]=Σ(x−μσ)3Pr(X−x)skew(X)=E[X-E[X]]^3/{\sigma^3}=E[(\frac{X-\mu}{\sigma})^3]=Σ(\frac{x-\mu}{\sigma})^3Pr(X-x)skew(X)=E[X−E[X]]3/σ3=E[(σX−μ​)3]=Σ(σx−μ​)3Pr(X−x)Thus the skewness is 0.021, anthe stribution ha milpositive skew. The kurtosis requires computingkurtosis(X)=E[(X−E[X])4]σ4=E[(X−μσ)4]=Σ(x−μσ)4Pr(X−x)kurtosis(X)=\frac{E[(X-E[X])^4]}{\sigma^4}=E[(\frac{X-\mu}{\sigma})^4]=Σ(\frac{x-\mu}{\sigma})^4Pr(X-x)kurtosis(X)=σ4E[(X−E[X])4]​=E[(σX−μ​)4]=Σ(σx−μ​)4Pr(X−x)Thus the kurtosis is 2.24. The excess kurtosis is then 2.24 - 3 = -0.76. This stribution es not have excess kurtosis.e. The meis the value where least 50% probability lies to the left, anleast 50% probability lies to the right. Cumulating the probabilities into a C, this occurs the return value of 0%.1、老师,第一个和第二个红框是啥意思啊?2、为啥当X=0时,累积概率是52%,中位数不用线性插值法或者求X=0和X=-1的平均数呢?考试如果也是离散分布,累计概率超过50%,中位数也是取能概率一直累积超过50%的那个数?

2024-08-05 20:36 3 · 回答

NO.PZ2020010302000010 问题如下 Suppose the return on asset hthe following stribution:Compute the mean, variance, anstanrviation.Verify your result in (computing E[X2]E[X^2]E[X2] rectly anusing the alternative expression for the variance.Is this stribution skewe es this stribution have excess kurtosis? e. Whis the meof this stribution? The meis E[X] = Σx Pr(X = x) = 0.25%.The varianis Var[X]=Σ(x−E[X])2Pr(X=x)=0.000555Var[X] = Σ(x - E[X])^2 Pr(X = x) = 0.000555Var[X]=Σ(x−E[X])2Pr(X=x)=0.000555.The stanrviation is Var[X]=2.355\sqrt {Var[X]} = 2.355%Var[X]​=2.355.E[X2]=Σx2Pr(X=x)=.000561E[X^2] = Σx^2 Pr(X = x) = .000561E[X2]=Σx2Pr(X=x)=.000561 anso E[X2]−(E[X])2=0.000561−(.0025)2=.000555E[X^2] - (E[X])^2 = 0.000561 - (.0025)^2 = .000555E[X2]−(E[X])2=0.000561−(.0025)2=.000555, whiis the same.The skewness requires computingskew(X)=E[X−E[X]]3/σ3=E[(X−μσ)3]=Σ(x−μσ)3Pr(X−x)skew(X)=E[X-E[X]]^3/{\sigma^3}=E[(\frac{X-\mu}{\sigma})^3]=Σ(\frac{x-\mu}{\sigma})^3Pr(X-x)skew(X)=E[X−E[X]]3/σ3=E[(σX−μ​)3]=Σ(σx−μ​)3Pr(X−x)Thus the skewness is 0.021, anthe stribution ha milpositive skew. The kurtosis requires computingkurtosis(X)=E[(X−E[X])4]σ4=E[(X−μσ)4]=Σ(x−μσ)4Pr(X−x)kurtosis(X)=\frac{E[(X-E[X])^4]}{\sigma^4}=E[(\frac{X-\mu}{\sigma})^4]=Σ(\frac{x-\mu}{\sigma})^4Pr(X-x)kurtosis(X)=σ4E[(X−E[X])4]​=E[(σX−μ​)4]=Σ(σx−μ​)4Pr(X−x)Thus the kurtosis is 2.24. The excess kurtosis is then 2.24 - 3 = -0.76. This stribution es not have excess kurtosis.e. The meis the value where least 50% probability lies to the left, anleast 50% probability lies to the right. Cumulating the probabilities into a C, this occurs the return value of 0%. stanrviation 是不是算错了?var(x)开完根号不应该等于0.02吗?

2024-04-29 20:07 1 · 回答

NO.PZ2020010302000010 问题如下 Suppose the return on asset hthe following stribution:Compute the mean, variance, anstanrviation.Verify your result in (computing E[X2]E[X^2]E[X2] rectly anusing the alternative expression for the variance.Is this stribution skewe es this stribution have excess kurtosis? e. Whis the meof this stribution? The meis E[X] = Σx Pr(X = x) = 0.25%.The varianis Var[X]=Σ(x−E[X])2Pr(X=x)=0.000555Var[X] = Σ(x - E[X])^2 Pr(X = x) = 0.000555Var[X]=Σ(x−E[X])2Pr(X=x)=0.000555.The stanrviation is Var[X]=2.355\sqrt {Var[X]} = 2.355%Var[X]​=2.355.E[X2]=Σx2Pr(X=x)=.000561E[X^2] = Σx^2 Pr(X = x) = .000561E[X2]=Σx2Pr(X=x)=.000561 anso E[X2]−(E[X])2=0.000561−(.0025)2=.000555E[X^2] - (E[X])^2 = 0.000561 - (.0025)^2 = .000555E[X2]−(E[X])2=0.000561−(.0025)2=.000555, whiis the same.The skewness requires computingskew(X)=E[X−E[X]]3/σ3=E[(X−μσ)3]=Σ(x−μσ)3Pr(X−x)skew(X)=E[X-E[X]]^3/{\sigma^3}=E[(\frac{X-\mu}{\sigma})^3]=Σ(\frac{x-\mu}{\sigma})^3Pr(X-x)skew(X)=E[X−E[X]]3/σ3=E[(σX−μ​)3]=Σ(σx−μ​)3Pr(X−x)Thus the skewness is 0.021, anthe stribution ha milpositive skew. The kurtosis requires computingkurtosis(X)=E[(X−E[X])4]σ4=E[(X−μσ)4]=Σ(x−μσ)4Pr(X−x)kurtosis(X)=\frac{E[(X-E[X])^4]}{\sigma^4}=E[(\frac{X-\mu}{\sigma})^4]=Σ(\frac{x-\mu}{\sigma})^4Pr(X-x)kurtosis(X)=σ4E[(X−E[X])4]​=E[(σX−μ​)4]=Σ(σx−μ​)4Pr(X−x)Thus the kurtosis is 2.24. The excess kurtosis is then 2.24 - 3 = -0.76. This stribution es not have excess kurtosis.e. The meis the value where least 50% probability lies to the left, anleast 50% probability lies to the right. Cumulating the probabilities into a C, this occurs the return value of 0%. 请问带概率也可以计算机计算吗?如何计算?计算器能否计算kurtosis、skewness

2024-02-07 13:52 1 · 回答

NO.PZ2020010302000010问题如下 Suppose the return on asset hthe following stribution:Compute the mean, variance, anstanrviation.Verify your result in (computing E[X2]E[X^2]E[X2] rectly anusing the alternative expression for the variance.Is this stribution skewe es this stribution have excess kurtosis? e. Whis the meof this stribution?The meis E[X] = Σx Pr(X = x) = 0.25%.The varianis Var[X]=Σ(x−E[X])2Pr(X=x)=0.000555Var[X] = Σ(x - E[X])^2 Pr(X = x) = 0.000555Var[X]=Σ(x−E[X])2Pr(X=x)=0.000555.The stanrviation is Var[X]=2.355\sqrt {Var[X]} = 2.355%Var[X]​=2.355.E[X2]=Σx2Pr(X=x)=.000561E[X^2] = Σx^2 Pr(X = x) = .000561E[X2]=Σx2Pr(X=x)=.000561 anso E[X2]−(E[X])2=0.000561−(.0025)2=.000555E[X^2] - (E[X])^2 = 0.000561 - (.0025)^2 = .000555E[X2]−(E[X])2=0.000561−(.0025)2=.000555, whiis the same.The skewness requires computingskew(X)=E[X−E[X]]3/σ3=E[(X−μσ)3]=Σ(x−μσ)3Pr(X−x)skew(X)=E[X-E[X]]^3/{\sigma^3}=E[(\frac{X-\mu}{\sigma})^3]=Σ(\frac{x-\mu}{\sigma})^3Pr(X-x)skew(X)=E[X−E[X]]3/σ3=E[(σX−μ​)3]=Σ(σx−μ​)3Pr(X−x)Thus the skewness is 0.021, anthe stribution ha milpositive skew. The kurtosis requires computingkurtosis(X)=E[(X−E[X])4]σ4=E[(X−μσ)4]=Σ(x−μσ)4Pr(X−x)kurtosis(X)=\frac{E[(X-E[X])^4]}{\sigma^4}=E[(\frac{X-\mu}{\sigma})^4]=Σ(\frac{x-\mu}{\sigma})^4Pr(X-x)kurtosis(X)=σ4E[(X−E[X])4]​=E[(σX−μ​)4]=Σ(σx−μ​)4Pr(X−x)Thus the kurtosis is 2.24. The excess kurtosis is then 2.24 - 3 = -0.76. This stribution es not have excess kurtosis.e. The meis the value where least 50% probability lies to the left, anleast 50% probability lies to the right. Cumulating the probabilities into a C, this occurs the return value of 0%.根据老师的讲解, 中位数应该是第5个数和第6个数中间啊,不是0.5%吗,为什么是0?

2024-01-31 22:22 1 · 回答

NO.PZ2020010302000010 问题如下 Suppose the return on asset hthe following stribution:Compute the mean, variance, anstanrviation.Verify your result in (computing E[X2]E[X^2]E[X2] rectly anusing the alternative expression for the variance.Is this stribution skewe es this stribution have excess kurtosis? e. Whis the meof this stribution? The meis E[X] = Σx Pr(X = x) = 0.25%.The varianis Var[X]=Σ(x−E[X])2Pr(X=x)=0.000555Var[X] = Σ(x - E[X])^2 Pr(X = x) = 0.000555Var[X]=Σ(x−E[X])2Pr(X=x)=0.000555.The stanrviation is Var[X]=2.355\sqrt {Var[X]} = 2.355%Var[X]​=2.355.E[X2]=Σx2Pr(X=x)=.000561E[X^2] = Σx^2 Pr(X = x) = .000561E[X2]=Σx2Pr(X=x)=.000561 anso E[X2]−(E[X])2=0.000561−(.0025)2=.000555E[X^2] - (E[X])^2 = 0.000561 - (.0025)^2 = .000555E[X2]−(E[X])2=0.000561−(.0025)2=.000555, whiis the same.The skewness requires computingskew(X)=E[X−E[X]]3/σ3=E[(X−μσ)3]=Σ(x−μσ)3Pr(X−x)skew(X)=E[X-E[X]]^3/{\sigma^3}=E[(\frac{X-\mu}{\sigma})^3]=Σ(\frac{x-\mu}{\sigma})^3Pr(X-x)skew(X)=E[X−E[X]]3/σ3=E[(σX−μ​)3]=Σ(σx−μ​)3Pr(X−x)Thus the skewness is 0.021, anthe stribution ha milpositive skew. The kurtosis requires computingkurtosis(X)=E[(X−E[X])4]σ4=E[(X−μσ)4]=Σ(x−μσ)4Pr(X−x)kurtosis(X)=\frac{E[(X-E[X])^4]}{\sigma^4}=E[(\frac{X-\mu}{\sigma})^4]=Σ(\frac{x-\mu}{\sigma})^4Pr(X-x)kurtosis(X)=σ4E[(X−E[X])4]​=E[(σX−μ​)4]=Σ(σx−μ​)4Pr(X−x)Thus the kurtosis is 2.24. The excess kurtosis is then 2.24 - 3 = -0.76. This stribution es not have excess kurtosis.e. The meis the value where least 50% probability lies to the left, anleast 50% probability lies to the right. Cumulating the probabilities into a C, this occurs the return value of 0%. 请问一下这类型的题目是应该使用计算器么?如果是的话应该怎么输入呢?谢谢。

2024-01-30 12:48 2 · 回答