开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

颖哲 · 2021年04月19日

请问第三问为什么不用讲义里讲的第三种方法

NO.PZ2016031101000007

问题如下:

A European equity composite contains three portfolios. For convenience, the cash flow weighting factors are presented below.

A. Calculate the returns of Portfolio A, Portfolio B, and Portfolio C for the month of August using the Modified Dietz formula.

B. Calculate the August composite return by asset-weighting the individual portfolio returns using beginning-of-period values.

C. Calculate the August composite return by asset-weighting the individual portfolio returns using a method that reflects both beginning-of-period values and external cash flows.

选项:

解释:

A.

Portfolio returns:

lrA=85.374.97.574.9+(7.5×0.613)=2.979.5=0.0365=3.65%{l}r_A=\frac{85.3-74.9-7.5}{74.9+(7.5\times0.613)}=\frac{2.9}{79.5}=0.0365=3.65\%\\

rB=109.8127.6(15)(5)127.6+(15×0.742)+(5×0.387)=2.2114.535=0.0192=1.92%r_B=\frac{109.8-127.6-(-15)-(-5)}{127.6+(-15\times0.742)+(-5\times0.387)}=\frac{2.2}{114.535}=0.0192=1.92\%

rC=128.4110.415110.4+(15×0.387)=3116.205=0.0258=2.58%r_C=\frac{128.4-110.4-15}{110.4+(15\times0.387)}=\frac3{116.205}=0.0258=2.58\%

B.

To calculate the composite return based on beginning assets, first determine the percent of beginning composite assets represented by each portfolio; then determine the weighted-average return for the month:

Beginning composite assets = 74.9 + 127.6 + 110.4 = 312.9

Portfolio A = 74.9/312.9 = 0.239 = 23.9%

Portfolio B = 127.6/312.9 = 0.408 = 40.8%

Portfolio C = 110.4/312.9 = 0.353 = 35.3%

                              lrComp=(0.0365×0.239)+(0.0192×0.408)+(0.0258×0.353)=0.0257=2.57%{l}r_{Comp}=(0.0365\times0.239)+(0.0192\times0.408)+(0.0258\times0.353)\\=0.0257=2.57\%

C.

To calculate the composite return based on beginning assets plus cash flows, first use the denominator of the Modified Dietz formula to determine the percentage of total beginning assets plus weighted cash flows represented by each portfolio, and then calculate the weighted-average return:

Beginning composite assets + Weighted cash flows = [74.9 + (7.5 × 0.613)] + [127.6 + (–15 × 0.742) + (–5×0.387)] + [110.4 + (15 × 0.387)] = 79.5 + 114.535 + 116.205 = 310.24

Portfolio A = 79.5/310.24 = 0.256 = 25.6%

Portfolio B = 114.535/310.24 = 0.369 = 36.9%

Portfolio C = 116.205/310.24 = 0.375 = 37.5%

lrComp=(0.0365×0.256)+(0.0192×0.369)+(0.0258×0.375)=0.0261=2.61%{l}r_{Comp}=(0.0365\times0.256)+(0.0192\times0.369)+(0.0258\times0.375)\\=0.0261=2.61\%

A mathematically equivalent method consists simply in summing beginning assets and intra-period external cash flows, treating the entire composite as though it were a single portfolio and then computing the return directly with the Modified Dietz formula.

lrComp=323.5312.9(15+7.5+10)312.9+[(15)×0.742+7.5×0.613+10×0.387]=0.0261=2.61%{l}r_{Comp}=\frac{323.5-312.9-(-15+7.5+10)}{312.9+\lbrack(-15)\times0.742+7.5\times0.613+10\times0.387]}\\=0.0261=2.61\%

讲义里讲了三种计算方法,第三种方法是TWRR using revaluation at the time of large external cash flows. 第三问为什么不用这种方法?

2 个答案
已采纳答案

韩韩_品职助教 · 2021年04月21日

嗨,努力学习的PZer你好:


同学你好,这三个题目是层层递进的,第一问只问了Modified Dietz formula. 第二问就是Modified Dietz 公式基础上用asset weighting, 但是只考虑beginning value,第三问就是Modified Dietz公式基础上考虑asset weighting,同时要考虑beginning value和external cashflow. 实际就是克上讲的第三种方法。

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

mario · 2021年04月24日

GIPS 会考这种计算么?

韩韩_品职助教 · 2021年04月25日

嗨,爱思考的PZer你好:


同学你好,只有极个别的年份,考过一次这个计算,其他均是以定性的内容来讲解的。

----------------------------------------------
加油吧,让我们一起遇见更好的自己!