开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

anyewumian · 2021年03月08日

问一道题:NO.PZ2016062402000012 [ FRM I ]

问题如下:

Consider a stock with an initial price of $100. Its price one year from now is given by S=100×erS=100\times e^r, where the rate of return r is normally distributed with a mean of 0.1 and a standard deviation of 0.2. With 95% confidence, after rounding, S will be between

选项:

A.

$67.57 and $147.99

B.

$70.80 and $149.20

C.

$74.68 and $163.56

D.

$102.18 and $119.53

解释:

Note that this is a two-tailed confidence band, so that α = 1.96. We find the extreme values from $100eμ±ασe^{\mu\pm\alpha\sigma} The lower limit is then V1=$100e0.101.96×0.2=$100e0.292=$74.68V_1=\$100e^{0.10-1.96\times0.2} =\$100e^{-0.292}=\$74.68. The upper limit is V2=$100e0.10+1.96×0.2=$100e0.492=$163.56V_2=\$100e^{0.10+1.96\times0.2}=\$100e^{0.492}=\$163.56.

老师能详细解释一下这道题吗

1 个答案

小刘_品职助教 · 2021年03月08日

同学你好,

首先收益率r的分布是满足正态分布的,均值是0.1,sigma是0.2;

然后利用了s 和r 之间的关系, ln(s1/s0)=r

两边取对数之后就是s1/s0=e^r

求s的上下限其实就是求95%置信区间下的r的上下限,所以以上限为例,有

s1=100*e^(0.1+0.2*1.95)=163.56