开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Stefanie🍅 · 2021年02月16日

解答看不懂

NO.PZ2020011901000032

问题如下:

What is the minimum USD annual premium that an insurance company should charge for a two-year term life insurance policy with face value of USD 1 million when the policyholder is a woman aged 71? (Use Table 2.1 and assume an interest rate of 3% compounded annually.)


选项:

A.

18,153

B.

17,874

C.

17,996

D.

17,767

解释:

B.

The probability of a payout in the first year (time 0.5 years) is 0.017275. The probability of a payout in the second year (time 1.5 years) is

(1 - 0.017275) * 0.019047 = 0.018718

The PV of the expected cost of the policy is therefore:

17,275/(1.030.5)+18,718/(1.031.5)=34,92817,275/(1.03^{0.5}) + 18,718/(1.03^{1.5}) = 34,928

The first premium is at time zero. The second premium, at time one year, has a probability of 1 - 0.017275 = 0.982725 of being made. If the premium is X, the expected present value is

X + 0.982725X/1.03 = 1.954102X

The minimum premium is given by solving:

1.954102X = 34,928

It is 17,874.

 1 解答的第一部分(1-0.o19047)*0.019047 是在算保人第一年没死但是第二年死的概率,我理解的对吗? 2 这里的pv of expected cost是在算什么?为什么是17275除以年利率(1.03)^0.5?  0.017275为什么会乘以100万? 3 然后之后的解答也不理解,为什么要设X,这个不是一个两年的保单吗?如果投保人在两年内挂了就有100万可以拿,如果过了两年没挂就什么也拿不到。
1 个答案

品职答疑小助手雍 · 2021年02月18日

嗨,从没放弃的小努力你好:


1.可能你打错数字了哈,(1 - 0.017275) * 0.019047 = 0.018718是在算保人第一年没死但是第二年死的概率的~

2.因为第一年死了的话,理赔金额是1million(题目中提到过),所以理赔的期望就是理赔金额乘以概率。除以利率是折现的过程。

3.这就要理解题意了,这样才能理解这个X + 0.982725X/1.03 = 34,928是怎么来的。这题最终的意义其实是:保险公司(第一年没死的话)这两年收相同的金额X,所以等号左边是第一年交的X和第一年活下来的话第二年期望缴费的概率0.982725乘以X,等号右边是死亡需要赔付保费的期望的现值。两边要相等。


-------------------------------
努力的时光都是限量版,加油!


  • 1

    回答
  • 0

    关注
  • 681

    浏览
相关问题

NO.PZ2020011901000032 问题如下 Whis the minimum USannupremium thinsurancompany shoulcharge for a two-yeterm life insuranpoliwith favalue of US1 million when the policyholr is a womage71? (Use Table 2.1 anassume interest rate of 3% compounannually.) A.18,153 B.17,874 C.17,996 17,767 The probability of a payout in the first ye(time 0.5 years) is 0.017275. The probability of a payout in the seconye(time 1.5 years) is (1 - 0.017275) * 0.019047 = 0.018718 The PV of the expectecost of the poliis therefore: 17,275/(1.030.5)+18,718/(1.031.5)=34,92817,275/(1.03^{0.5}) + 18,718/(1.03^{1.5}) = 34,92817,275/(1.030.5)+18,718/(1.031.5)=34,928The first premium is time zero. The seconpremium, time one year, ha probability of 1 - 0.017275 = 0.982725 of being ma. If the premium is X, the expectepresent value isX + 0.982725X/1.03 = 1.954102XThe minimum premium is given solving: 1.954102X = 34,928It is 17,874. 因为保费赔偿是1m,所以保费赔偿乘以概率等于就是期望获得的钱,这个应该如何理解

2023-10-04 16:23 1 · 回答

NO.PZ2020011901000032问题如下Whis the minimum USannupremium thinsurancompany shoulcharge for a two-yeterm life insuranpoliwith favalue of US1 million when the policyholr is a womage71? (Use Table 2.1 anassume interest rate of 3% compounannually.) A.18,153 B.17,874 C.17,996 17,767 The probability of a payout in the first ye(time 0.5 years) is 0.017275. The probability of a payout in the seconye(time 1.5 years) is (1 - 0.017275) * 0.019047 = 0.018718 The PV of the expectecost of the poliis therefore: 17,275/(1.030.5)+18,718/(1.031.5)=34,92817,275/(1.03^{0.5}) + 18,718/(1.03^{1.5}) = 34,92817,275/(1.030.5)+18,718/(1.031.5)=34,928The first premium is time zero. The seconpremium, time one year, ha probability of 1 - 0.017275 = 0.982725 of being ma. If the premium is X, the expectepresent value isX + 0.982725X/1.03 = 1.954102XThe minimum premium is given solving: 1.954102X = 34,928It is 17,874.分母不是1.03的1.5次方或者二次方而是1.03的一次方

2023-05-25 12:04 1 · 回答

NO.PZ2020011901000032问题如下Whis the minimum USannupremium thinsurancompany shoulcharge for a two-yeterm life insuranpoliwith favalue of US1 million when the policyholr is a womage71? (Use Table 2.1 anassume interest rate of 3% compounannually.) A.18,153 B.17,874 C.17,996 17,767 The probability of a payout in the first ye(time 0.5 years) is 0.017275. The probability of a payout in the seconye(time 1.5 years) is (1 - 0.017275) * 0.019047 = 0.018718 The PV of the expectecost of the poliis therefore: 17,275/(1.030.5)+18,718/(1.031.5)=34,92817,275/(1.03^{0.5}) + 18,718/(1.03^{1.5}) = 34,92817,275/(1.030.5)+18,718/(1.031.5)=34,928The first premium is time zero. The seconpremium, time one year, ha probability of 1 - 0.017275 = 0.982725 of being ma. If the premium is X, the expectepresent value isX + 0.982725X/1.03 = 1.954102XThe minimum premium is given solving: 1.954102X = 34,928It is 17,874.一般只用存活概率是吗

2023-04-07 10:08 1 · 回答

NO.PZ2020011901000032问题如下Whis the minimum USannupremium thinsurancompany shoulcharge for a two-yeterm life insuranpoliwith favalue of US1 million when the policyholr is a womage71? (Use Table 2.1 anassume interest rate of 3% compounannually.) A.18,153 B.17,874 C.17,996 17,767 The probability of a payout in the first ye(time 0.5 years) is 0.017275. The probability of a payout in the seconye(time 1.5 years) is (1 - 0.017275) * 0.019047 = 0.018718 The PV of the expectecost of the poliis therefore: 17,275/(1.030.5)+18,718/(1.031.5)=34,92817,275/(1.03^{0.5}) + 18,718/(1.03^{1.5}) = 34,92817,275/(1.030.5)+18,718/(1.031.5)=34,928The first premium is time zero. The seconpremium, time one year, ha probability of 1 - 0.017275 = 0.982725 of being ma. If the premium is X, the expectepresent value isX + 0.982725X/1.03 = 1.954102XThe minimum premium is given solving: 1.954102X = 34,928It is 17,874.这个0.5可以用1吗?

2023-03-14 16:43 1 · 回答

NO.PZ2020011901000032问题如下Whis the minimum USannupremium thinsurancompany shoulcharge for a two-yeterm life insuranpoliwith favalue of US1 million when the policyholr is a womage71? (Use Table 2.1 anassume interest rate of 3% compounannually.) A.18,153 B.17,874 C.17,996 17,767 The probability of a payout in the first ye(time 0.5 years) is 0.017275. The probability of a payout in the seconye(time 1.5 years) is (1 - 0.017275) * 0.019047 = 0.018718 The PV of the expectecost of the poliis therefore: 17,275/(1.030.5)+18,718/(1.031.5)=34,92817,275/(1.03^{0.5}) + 18,718/(1.03^{1.5}) = 34,92817,275/(1.030.5)+18,718/(1.031.5)=34,928The first premium is time zero. The seconpremium, time one year, ha probability of 1 - 0.017275 = 0.982725 of being ma. If the premium is X, the expectepresent value isX + 0.982725X/1.03 = 1.954102XThe minimum premium is given solving: 1.954102X = 34,928It is 17,874.就是不明白后面的计算过程,题也没搞懂

2022-05-05 04:53 1 · 回答