开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Jessie999 · 2021年01月14日

问一道题:NO.PZ2020010303000010

问题如下:

Either using a Z table or the Excel function NORM.S.INV, compute

a. z so that Pr(z < Z) = .95 when Z ∼ N(0, 1)

b. z so that Pr(z > Z) = .95 when Z ∼ N(0, 1)

c. z so that Pr(-z < Z < z) = .75 when Z ∼ N(0, 1)

d. a and b so that Pr(a < X < b) = .75 and Pr(X < a) = 0.125 when X ∼ N(2, 4)

选项:

解释:

a. 1.645. In Excel, the command to compute this value is NORM.S.INV(.95).

b. -1.645. In Excel, the command to compute this value is NORM.S.INV(.05).

c. 1.15. Here the tail to the left should have 12.5% and the tail to the right should also have 12.5%. In Excel, the command to compute this value is –NORM.S.INV(.125).

d. -0.3 and 4.3. The area of the left and right should each have 12.5%. These can be constructed using the answer to the previous problem by re-centering on the mean and scaling by the standard deviation, so that a = 2 * -1.15 + 2 and b = 2 * 1.15 + 2. Note that the formula is a=σq+μa = \sigma * q + \mu, where q is the quantile value.

请问这题的解体思路是什么?没太看懂a\b的答案

2 个答案

袁园_品职助教 · 2021年01月17日

不是考点

常用的自己记住

不常用的题目中会给

袁园_品职助教 · 2021年01月16日

同学你好!

a b 是让你算一下0.95的分位点

以a为例

Pr(z < Z) =0.95 表示累计概率为95%

Z ∼ N(0, 1) 即Z是一个均值为0 方差为1 的标准正态分布

答案中的 NORM.S.INV(.95) 是在excel 中计算分位点所用到的公式

Jessie999 · 2021年01月16日

在excel中计算分位点的公式是考点吗?一般不是查表得到的答案?

  • 2

    回答
  • 0

    关注
  • 496

    浏览
相关问题

NO.PZ2020010303000010 问题如下 Either using a Z table or the Excel function NORM.S.INV, computez so thPr(z Z) = .95 when Z ∼ N(0, 1)z so thPr(z Z) = .95 when Z ∼ N(0, 1)z so thPr(-z Z z) = .75 when Z ∼ N(0, 1) a anb so thPr( X = .75 anPr(X = 0.125 when X ∼ N(2, 4) 1.645. In Excel, the commanto compute this value is NORM.S.INV(.95).-1.645. In Excel, the commanto compute this value is NORM.S.INV(.05).1.15. Here the tail to the left shoulhave 12.5% anthe tail to the right shoulalso have 12.5%. In Excel, the commanto compute this value is –NORM.S.INV(.125). -0.3 an4.3. The area of the left anright shouleahave 12.5%. These cconstructeusing the answer to the previous problem re-centering on the meanscaling the stanrviation, so tha = 2 * -1.15 + 2 anb = 2 * 1.15 + 2. Note ththe formula is a=σ∗q+μa = \sigma * q + \mua=σ∗q+μ, where q is the quantile value. 没看懂问什么, 看解答是在求各种分位点 ?可以下excel的函数是怎么用的吗, 能用考试计算器求出来吗

2024-04-07 17:37 1 · 回答

NO.PZ2020010303000010 问题如下 Either using a Z table or the Excel function NORM.S.INV, computez so thPr(z Z) = .95 when Z ∼ N(0, 1)z so thPr(z Z) = .95 when Z ∼ N(0, 1)z so thPr(-z Z z) = .75 when Z ∼ N(0, 1) a anb so thPr( X = .75 anPr(X = 0.125 when X ∼ N(2, 4) 1.645. In Excel, the commanto compute this value is NORM.S.INV(.95).-1.645. In Excel, the commanto compute this value is NORM.S.INV(.05).1.15. Here the tail to the left shoulhave 12.5% anthe tail to the right shoulalso have 12.5%. In Excel, the commanto compute this value is –NORM.S.INV(.125). -0.3 an4.3. The area of the left anright shouleahave 12.5%. These cconstructeusing the answer to the previous problem re-centering on the meanscaling the stanrviation, so tha = 2 * -1.15 + 2 anb = 2 * 1.15 + 2. Note ththe formula is a=σ∗q+μa = \sigma * q + \mua=σ∗q+μ, where q is the quantile value. 题目Pr(z Z) = .95 Pr(z Z) = Pr(Z z) 求的是小z吧,z= -1.645?题目Pr(z Z) = .95 Pr(z Z) = Pr(Z z) ,z = 1.645?

2022-05-23 14:40 1 · 回答

NO.PZ2020010303000010 老师,第四问根据分位数反求分位点的公式要求掌握吗?讲义中只是提到了两者之间存在反函数关系

2022-02-17 23:21 2 · 回答

NO.PZ2020010303000010 个想请教一下为什么要加上2呀?

2022-01-03 12:21 1 · 回答

NO.PZ20200103030000101.645是怎么计算出的?用的是什么公式?

2021-07-24 21:53 1 · 回答