开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Yang · 2020年10月23日

问一道题:NO.PZ201903040100000106 [ CFA II ]

* 问题详情,请 查看题干

问题如下:

Sonal Johnson is a risk manager for a bank. She manages the bank’s risks using a combination of swaps and forward rate agreements (FRAs).

Johnson prices a three-year Libor-based interest rate swap with annual resets using the present value factors presented in Exhibit 1.

Exhibit 1 Present Value Factors

Johnson also uses the present value factors in Exhibit 1 to value an interest rate swap that the bank entered into one year ago as the receive-floating party. Selected data for the swap are presented in Exhibit 2. Johnson notes that the current equilibrium two-year fixed swap rate is 1.12%.

Exhibit 2 Selected Data on Fixed for Floating Interest Rate Swap

One of the banks investments is exposed to movements in the Japanese yen, and Johnson desires to hedge the currency exposure. She prices a one-year fixed-for-fixed currency swap involving yen and US dollars, with a quarterly reset. Johnson uses the interest rate data presented in Exhibit 3 to price the currency swap.

Exhibit 3 Selected Japanese and US Interest Rate Data

Johnson next reviews an equity swap with an annual reset that the bank entered into six months ago as the receive-fixed, pay-equity party. Selected data regarding the equity swap, which is linked to an equity index, are presented in Exhibit 4. At the time of initiation, the underlying equity index was trading at 100.00.

Exhibit 4 Selected Data on Equity Swap

The equity index is currently trading at 103.00, and relevant US spot rates, along with their associated present value factors, are presented in Exhibit 5.

Exhibit 5 Selected US Spot Rates and Present Value Factors

Johnson reviews a 6 x 9 FRA that the bank entered into 90 days ago as the pay-fixed/ receive-floating party. Selected data for the FRA are presented in Exhibit 6, and current Libor data are presented in Exhibit 7. Based on her interest rate forecast, Johnson also considers whether the bank should enter into new positions in 1 x 4 and 2 x 5 FRAs.

Exhibit 6 6 x 9 FRA Data

Exhibit 7 Current Libor

Three months later, the 6 x 9 FRA in Exhibit 6 reaches expiration, at which time the three-month US dollar Libor is 1.10% and the six-month US dollar Libor is 1.20%. Johnson determines that the appropriate discount rate for the FRA settlement cash flows is 1.10%.


6.From the bank’s perspective, based on Exhibits 6 and 7, the value of the 6 x 9 FRA 90 days after inception is closest to:

选项:

A.

$14,817.

B.

$19,647.

C.

$29,635.

解释:

A is correct. The current value of the 6 x 9 FRA is calculated as

Vg(0,h,m) = {[FRA(g,h - g,m) - FRA(0,h,m)]tm}/[1 + Dg(h + m - g)th+m-g]

The 6 x 9 FRA expires six months after initiation. The bank entered into the FRA 90 days ago; thus, the FRA will expire in 90 days. To value the FRA, the first step is to compute the new FRA rate, which is the rate on Day 90 of an FRA that expires in 90 days in which the underlying is the 90-day Libor, or FRA(90,90,90):

FRA(g,h - g,m) = {[1 + Lg(h - g + m)th-g+m]/[1 + L0(h - g)th-g] - 1}/tm

FRA(90,90,90) = {[1 + L90(180 - 90 + 90)(180/360)]/[1 + L90(180 - 90) (90/360)] - 1}/(90/360)

FRA(90,90,90) = {[1 + L90(180)(180/360)]/[1 + L90(90)(90/360)] - 1}/ (90/360)

Exhibit 7 indicates that L90(180) = 0.95% and L90(90) = 0.90%, so

FRA(90,90,90) = {[1 + 0.0095(180/360)]/[1 + 0.0090(90/360)] - 1}/(90/360)

FRA(90,90,90) = [(1.00475/1.00225) - 1](4) = 0.009978, or 0.9978%

Therefore, given the FRA rate at initiation of 0.70% and notional principal of $20 million from Exhibit 1, the current value of the forward contract is calculated as

Vg(0,h,m) = V90(0,180,90)

V90(0,180,90) = $20,000,000[(0.009978 - 0.0070)(90/360)]/[1 + 0.0095(180/360)].

V90(0,180,90) = $14,887.75/1.00475 = $14,817.37.

Inception如何理解?
3 个答案
已采纳答案

xiaowan_品职助教 · 2020年10月24日

嗨,爱思考的PZer你好:


同学你好,

这道题是今年经典题FRA这个视频里3.2题,我截一张老师板书的画图和计算式,你可以参考一下,inception就是指0时刻,即FRA签约的时候


-------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!


澳洲扒鸡 · 2021年04月29日

错了吧,inception 是3时刻啊

WallE_品职答疑助手 · 2021年04月29日

嗨,爱思考的PZer你好:


不是的,0时刻才就开始签了,合约6时刻到期,开始借钱。

----------------------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!

xiaowan_品职助教 · 2020年10月26日

同学你好,

如果是从3时刻折现到0时刻,应该用0时刻时90天的Libor来折现。

  • 3

    回答
  • 1

    关注
  • 1593

    浏览
相关问题

NO.PZ201903040100000106 $19,647. $29,635. A is correct. The current value of the 6 x 9 FRA is calculateVg(0,h,m) = {[FRA(g,h - g,m) - FRA(0,h,m)]tm}/[1 + (h + m - g)th+m-g] The 6 x 9 FRA expires six months after initiation. The bank entereinto the FRA 90 ys ago; thus, the FRA will expire in 90 ys. To value the FRthe first step is to compute the new FRA rate, whiis the rate on y 90 of FRA thexpires in 90 ys in whithe unrlying is the 90-y Libor, or FRA(90,90,90): FRA(g,h - g,m) = {[1 + Lg(h - g + m)th-g+m]/[1 + L0(h - g)th-g] - 1}/tm FRA(90,90,90) = {[1 + L90(180 - 90 + 90)(180/360)]/[1 + L90(180 - 90) (90/360)] - 1}/(90/360) FRA(90,90,90) = {[1 + L90(180)(180/360)]/[1 + L90(90)(90/360)] - 1}/ (90/360) Exhibit 7 incates thL90(180) = 0.95% anL90(90) = 0.90%, so FRA(90,90,90) = {[1 + 0.0095(180/360)]/[1 + 0.0090(90/360)] - 1}/(90/360) FRA(90,90,90) = [(1.00475/1.00225) - 1](4) = 0.009978, or 0.9978% Therefore, given the FRA rate initiation of 0.70% annotionprincipof $20 million from Exhibit 1, the current value of the forwarcontrais calculateVg(0,h,m) = V90(0,180,90) V90(0,180,90) = $20,000,000[(0.009978 - 0.0070)(90/360)]/[1 + 0.0095(180/360)]. V90(0,180,90) = $14,887.75/1.00475 = $14,817.37. 为什么这道题目不需要用到scout factor?能否画个图一下?作为对比,书上同一个case的第9题的公式: 利率差*本金*折现因子之和。第9题考点为“求swap的fair value”。我有点概念不清FRA value和swvalue的区别在什么地方?两者的计算公式有怎么样的区别?谢谢!

2021-10-04 21:01 1 · 回答

NO.PZ201903040100000106 签合约时,t=0;now是t=3 和前面一个问题相对比(另一道题目为NO.PZ2019010402000013),下图30天libor、60天libor、90天libor、120天libor、150天libor、180天libor、210天libor、270天libor的数字,是对于t=3时点,还是t=0时点? 另外,考试的时候也默认是在 t=(前面回答的时点),对吗?应该怎么判别?谢谢!

2021-10-04 01:37 1 · 回答

能不能用直接求value的方式给我们画个图呢?我的算法,跟答案有些出入 我是NP*( ( 1/ ( 1+ 0.95%*60*360)) - ( 1+ 0.7%*90/360 / 1+0.95%*180/360 ) )

2020-10-03 13:55 1 · 回答

我按照FRA的原理,把支付固定利息的的三个月期贷款终值,用3个月的折现率1.1%,得到固定利息方向现金流的现值,与浮动方向现金流现值NP做差,然后用90天libor折现到当前。 1、6×9FRA在6个月时刻到期,进入3个月的贷款期,贷款终值为20,000,000×(1+0.7%×1/4); 2、将上述贷款终值用1.1%的折现率折现到贷款开始时,为20,000,000×(1+0.7%×1/4)/(1+1.1%×1/4) 3、用浮动利率在贷款开始时的现值20,000,000与上述固定利息贷款现金流现值做差,20,000,000-20,000,000×(1+0.7%×1/4)/(1+1.1%×1/4)=19,945.15 4、将上述结果用3个月libor0.9%折现到当前时刻,为19,945.15/(1+0.9%×1/4)=19,900.37. 请问这种算法错在哪里?为什么答案解析中不用1.1%的折现率?

2020-07-04 11:34 1 · 回答