问题如下图:
选项:
A.
B.
C.
解释:
NO.PZ2017092702000072 问题如下 Given a portfolio of five stocks, how many unique covarianterms, exclung variances, are requireto calculate the portfolio return variance? A.10 B.20 C.25 A is correct.A covarianmatrix for five stocks h5 × 5 = 25 entries. Subtracting the 5 agonvarianterms results in 20 off-agonentries. Because a covarianmatrix is symmetrical, only 10 entries are unique (20/2 = 10)根据五个股票两两组合,去掉自己和自己组合,一共是5*4/2=10种 是要求这个portfolio的variance,那就应该知道五个数的variance, 还有五个数两两组合的covariance。covariance是10个,但是不是还有五个variance吗,应该是15个才对啊?
NO.PZ2017092702000072问题如下Given a portfolio of five stocks, how many unique covarianterms, exclung variances, are requireto calculate the portfolio return variance?A.10 B.20 C.25 A is correct.A covarianmatrix for five stocks h5 × 5 = 25 entries. Subtracting the 5 agonvarianterms results in 20 off-agonentries. Because a covarianmatrix is symmetrical, only 10 entries are unique (20/2 = 10)根据五个股票两两组合,去掉自己和自己组合,一共是5*4/2=10种 这个题是依据哪个部分讲的
NO.PZ2017092702000072 问题如下 Given a portfolio of five stocks, how many unique covarianterms, exclung variances, are requireto calculate the portfolio return variance? A.10 B.20 C.25 A is correct.A covarianmatrix for five stocks h5 × 5 = 25 entries. Subtracting the 5 agonvarianterms results in 20 off-agonentries. Because a covarianmatrix is symmetrical, only 10 entries are unique (20/2 = 10)根据五个股票两两组合,去掉自己和自己组合,一共是5*4/2=10种 how many unique covarianterms, exclung variances - 可以仔细讲解一下这句什么意思吗?我觉得这道题和讲义给出的Combination的定义以及例题都不太一样,很难理解...
NO.PZ2017092702000072问题如下Given a portfolio of five stocks, how many unique covarianterms, exclung variances, are requireto calculate the portfolio return variance? A.10 B.20 C.25 A is correct.A covarianmatrix for five stocks h5 × 5 = 25 entries. Subtracting the 5 agonvarianterms results in 20 off-agonentries. Because a covarianmatrix is symmetrical, only 10 entries are unique (20/2 = 10)根据五个股票两两组合,去掉自己和自己组合,一共是5*4/2=10种 請問哪裡判斷出是兩兩組合?謝謝。
NO.PZ2017092702000072 20 25 A is correct. A covarianmatrix for five stocks h5 × 5 = 25 entries. Subtracting the 5 agonvarianterms results in 20 off-agonentries. Because a covarianmatrix is symmetrical, only 10 entries are unique (20/2 = 10) 根据五个股票两两组合,去掉自己和自己组合,一共是5*4/2=10种 可以详细讲一下吗?我觉得用20 C 5就可以算。但还想听一下具体的解题思路。