开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

loutianru · 2017年11月27日

问一道题:NO.PZ2015120604000064 [ CFA I ]

1.9和2.58怎么样计算的
问题如下图:
选项:
A.
B.
C.
解释:
2 个答案
已采纳答案

吴昊_品职助教 · 2017年11月27日

先算期望,再通过方差定义算方差,接着开根号得到标准差。

Ex=-0.2*2+1*0.6+4*0.2=1

Dx=(-2-1)^2*0.2+(1-1)^2*0.6+(4-1)^2*0.2=3.6,开根号得1.9

Y的标准差一样可得

酣然大笑 · 2018年11月03日

老师,这个题里的1.9和2.58我算出来了,可是为什么答案是-0.98我看不懂,求解

吴昊_品职助教 · 2018年11月04日

你应该是对于协方差的计算有所不理解,具体的我贴在下面

吴昊_品职助教 · 2018年11月04日

如下图所示:

  • 2

    回答
  • 2

    关注
  • 573

    浏览
相关问题

NO.PZ2015120604000064问题如下 Accorng to the above table, whis the correlation of X anY, given the joint probability table above?A.-0.98.B.0.16.C.0.98.A is correctCorr(X,Y)=Cov(X,Y)σxσyCorr(X,Y)=\fr{ Cov(X,Y) }{ { \sigma }_{ x }{ \sigma }_{ y } } Corr(X,Y)=σx​σy​Cov(X,Y)​,Cov(X,Y)=-4.8, stanrviations of X anY are 1.90 an2.58, calculatebefore,thus correlation of X anY is -0.98这道题不难理解 但是感觉写了半张纸 费了很多分钟。请问有没有简便方法 或者这种计算量是真题会有的吗。

2024-10-03 15:31 1 · 回答

NO.PZ2015120604000064 问题如下 Accorng to the above table, whis the correlation of X anY, given the joint probability table above? A.-0.98. B.0.16. C.0.98. A is correctCorr(X,Y)=Cov(X,Y)σxσyCorr(X,Y)=\fr{ Cov(X,Y) }{ { \sigma }_{ x }{ \sigma }_{ y } } Corr(X,Y)=σx​σy​Cov(X,Y)​,Cov(X,Y)=-4.8, stanrviations of X anY are 1.90 an2.58, calculatebefore,thus correlation of X anY is -0.98 如题,看了之前的解析,还是不知道X和Y 的标准差怎么求出来的,能不能仔细讲解一下

2024-07-09 12:54 1 · 回答

NO.PZ2015120604000064 问题如下 Accorng to the above table, whis the correlation of X anY, given the joint probability table above? A.-0.98. B.0.16. C.0.98. A is correctCorr(X,Y)=Cov(X,Y)σxσyCorr(X,Y)=\fr{ Cov(X,Y) }{ { \sigma }_{ x }{ \sigma }_{ y } } Corr(X,Y)=σx​σy​Cov(X,Y)​,Cov(X,Y)=-4.8, stanrviations of X anY are 1.90 an2.58, calculatebefore,thus correlation of X anY is -0.98 因为要求correlation,所以要分别求出公式里面的covariance和stanrviation分别求E(x)和E(y),得出1和1.6求方差variance,然后开根号得出标准差stanrviation,-- 1.8974和2.5768求covariance: - 4.8把第二点的标准差和第三点的协方差带入correlation的公式求出结果

2024-04-01 14:52 3 · 回答

NO.PZ2015120604000064 问题如下 Accorng to the above table, whis the correlation of X anY, given the joint probability table above? A.-0.98. B.0.16. C.0.98. A is correctCorr(X,Y)=Cov(X,Y)σxσyCorr(X,Y)=\fr{ Cov(X,Y) }{ { \sigma }_{ x }{ \sigma }_{ y } } Corr(X,Y)=σx​σy​Cov(X,Y)​,Cov(X,Y)=-4.8, stanrviations of X anY are 1.90 an2.58, calculatebefore,thus correlation of X anY is -0.98 可以告诉一下公式吗

2024-02-25 01:17 3 · 回答

NO.PZ2015120604000064问题如下Accorng to the above table, whis the correlation of X anY, given the joint probability table above?A.-0.98.B.0.16.C.0.98.A is correctCorr(X,Y)=Cov(X,Y)σxσyCorr(X,Y)=\fr{ Cov(X,Y) }{ { \sigma }_{ x }{ \sigma }_{ y } } Corr(X,Y)=σx​σy​Cov(X,Y)​,Cov(X,Y)=-4.8, stanrviations of X anY are 1.90 an2.58, calculatebefore,thus correlation of X anY is -0.98为什么计算出VarX 和VarY后,最后一步代入公式 不用开根号?

2024-02-19 23:28 1 · 回答