开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

王思祺 · 2020年09月04日

老师请问考试需要查表的题会附表吗。问一道题:NO.PZ2017092702000114 [ CFA I ]

问题如下图:

选项:

A.

B.

C.

解释:

老师请问如果查表的思路,应该怎么考虑,如何查表

1 个答案

星星_品职助教 · 2020年09月04日

同学你好,

无论是正态分布还是t分布,考试都不大可能给整张表要求查,一般的套路是给出几个关键值,让考生根据significance level,或者自由度(t分布)等判断准则,去选出应该使用的关键值,直接代入计算即可。

  • 1

    回答
  • 0

    关注
  • 777

    浏览
相关问题

NO.PZ2017092702000114 问题如下 For a sample size of 65 with a meof 31 taken from a normally stributepopulation with a varianof 529, a 99% confinintervfor the population mewill have a lower limit closest to: A.23.64. B.25.41. C.30.09. A is correct.To solve, use the structure of Confininterv= Point estimate ± Reliability factor × Stanrerror, which, for a normally stributepopulation with known variance, is representethe following formula:X‾±zα/2σn\overline X\pm z_{\alpha/2}\frac\sigma{\sqrt n}X±zα/2​n​σ​ For a 99% confininterval, use z0.005 = 2.58. Also, σ = 529\sqrt{529}529​ = 23. Therefore, the lower limit =31−2.58×2365=23.639831-2.58\times\frac{23}{\sqrt{65}}=23.639831−2.58×65​23​=23.6398 我们需要用到【置信区间结构】的计算公式解决本题the structure of Confininterv= Point estimate ± Reliability factor × Stanrerror即X‾±zα/2σn\overline X\pm z_{\alpha/2}\frac\sigma{\sqrt n}X±zα/2​n​σ​当置信区间=99%的时候,Z0.005=2.58,且 σ = 529\sqrt{529}529​ = 23. 所以,下限为 =31−2.58∗2365=23.6398=31-2.58*\frac{23}{\sqrt{65}}=23.6398=31−2.58∗65​23​=23.6398 老师,这种题型的计算思考步骤是什么呢,总是容易搞混,看题找不到方向?谢谢老师

2023-06-06 23:49 1 · 回答

NO.PZ2017092702000114 问题如下 For a sample size of 65 with a meof 31 taken from a normally stributepopulation with a varianof 529, a 99% confinintervfor the population mewill have a lower limit closest to: A.23.64. B.25.41. C.30.09. A is correct.To solve, use the structure of Confininterv= Point estimate ± Reliability factor × Stanrerror, which, for a normally stributepopulation with known variance, is representethe following formula:X‾±zα/2σn\overline X\pm z_{\alpha/2}\frac\sigma{\sqrt n}X±zα/2​n​σ​ For a 99% confininterval, use z0.005 = 2.58. Also, σ = 529\sqrt{529}529​ = 23. Therefore, the lower limit =31−2.58×2365=23.639831-2.58\times\frac{23}{\sqrt{65}}=23.639831−2.58×65​23​=23.6398 我们需要用到【置信区间结构】的计算公式解决本题the structure of Confininterv= Point estimate ± Reliability factor × Stanrerror即X‾±zα/2σn\overline X\pm z_{\alpha/2}\frac\sigma{\sqrt n}X±zα/2​n​σ​当置信区间=99%的时候,Z0.005=2.58,且 σ = 529\sqrt{529}529​ = 23. 所以,下限为 =31−2.58∗2365=23.6398=31-2.58*\frac{23}{\sqrt{65}}=23.6398=31−2.58∗65​23​=23.6398 请问为什么 No.PZ2017092702000113 (选择题),这道题的置信区间计算需要使用“分母根号下n-1”,即需要用自由度求解,但是这道题不需要呢?请问老师区别在哪里?谢谢老师

2023-04-12 16:32 1 · 回答

NO.PZ2017092702000114 问题如下 For a sample size of 65 with a meof 31 taken from a normally stributepopulation with a varianof 529, a 99% confinintervfor the population mewill have a lower limit closest to: A.23.64. B.25.41. C.30.09. A is correct.To solve, use the structure of Confininterv= Point estimate ± Reliability factor × Stanrerror, which, for a normally stributepopulation with known variance, is representethe following formula:X‾±zα/2σn\overline X\pm z_{\alpha/2}\frac\sigma{\sqrt n}X±zα/2​n​σ​ For a 99% confininterval, use z0.005 = 2.58. Also, σ = 529\sqrt{529}529​ = 23. Therefore, the lower limit =31−2.58×2365=23.639831-2.58\times\frac{23}{\sqrt{65}}=23.639831−2.58×65​23​=23.6398 我们需要用到【置信区间结构】的计算公式解决本题the structure of Confininterv= Point estimate ± Reliability factor × Stanrerror即X‾±zα/2σn\overline X\pm z_{\alpha/2}\frac\sigma{\sqrt n}X±zα/2​n​σ​当置信区间=99%的时候,Z0.005=2.58,且 σ = 529\sqrt{529}529​ = 23. 所以,下限为 =31−2.58∗2365=23.6398=31-2.58*\frac{23}{\sqrt{65}}=23.6398=31−2.58∗65​23​=23.6398 请问老师,我有两个问题,第一个是如果题干没有告诉我应该用到什么分布的话,我怎么判断是应该用z分布还是t分布呢?第二个问题是,我现在很混乱z分布和t分布的计算有什么区别呢》唯一的区别就是t分布的计算是自由度-1是吗,z分布就直接用sample zise的数量?

2022-12-13 06:49 1 · 回答

NO.PZ2017092702000114问题如下 For a sample size of 65 with a meof 31 taken from a normally stributepopulation with a varianof 529, a 99% confinintervfor the population mewill have a lower limit closest to:A.23.64. B.25.41. C.30.09. A is correct.To solve, use the structure of Confininterv= Point estimate ± Reliability factor × Stanrerror, which, for a normally stributepopulation with known variance, is representethe following formula:X‾±zα/2σn\overline X\pm z_{\alpha/2}\frac\sigma{\sqrt n}X±zα/2​n​σ​ For a 99% confininterval, use z0.005 = 2.58. Also, σ = 529\sqrt{529}529​ = 23. Therefore, the lower limit =31−2.58×2365=23.639831-2.58\times\frac{23}{\sqrt{65}}=23.639831−2.58×65​23​=23.6398 我们需要用到【置信区间结构】的计算公式解决本题the structure of Confininterv= Point estimate ± Reliability factor × Stanrerror即X‾±zα/2σn\overline X\pm z_{\alpha/2}\frac\sigma{\sqrt n}X±zα/2​n​σ​当置信区间=99%的时候,Z0.005=2.58,且 σ = 529\sqrt{529}529​ = 23. 所以,下限为 =31−2.58∗2365=23.6398=31-2.58*\frac{23}{\sqrt{65}}=23.6398=31−2.58∗65​23​=23.6398 ​为什么样本标准差不是除以根号64呢?

2022-11-06 16:45 1 · 回答

NO.PZ2017092702000114问题如下 For a sample size of 65 with a meof 31 taken from a normally stributepopulation with a varianof 529, a 99% confinintervfor the population mewill have a lower limit closest to:A.23.64. B.25.41. C.30.09. A is correct.To solve, use the structure of Confininterv= Point estimate ± Reliability factor × Stanrerror, which, for a normally stributepopulation with known variance, is representethe following formula:X‾±zα/2σn\overline X\pm z_{\alpha/2}\frac\sigma{\sqrt n}X±zα/2​n​σ​ For a 99% confininterval, use z0.005 = 2.58. Also, σ = 529\sqrt{529}529​ = 23. Therefore, the lower limit =31−2.58×2365=23.639831-2.58\times\frac{23}{\sqrt{65}}=23.639831−2.58×65​23​=23.6398 我们需要用到【置信区间结构】的计算公式解决本题the structure of Confininterv= Point estimate ± Reliability factor × Stanrerror即X‾±zα/2σn\overline X\pm z_{\alpha/2}\frac\sigma{\sqrt n}X±zα/2​n​σ​当置信区间=99%的时候,Z0.005=2.58,且 σ = 529\sqrt{529}529​ = 23. 所以,下限为 =31−2.58∗2365=23.6398=31-2.58*\frac{23}{\sqrt{65}}=23.6398=31−2.58∗65​23​=23.6398 ​为什么这个n用的65,但是上一题t分布里面n用的n37,查表用的 36呢?

2022-07-07 15:19 1 · 回答