开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

还是星宇好 · 2020年08月16日

问一道题:NO.PZ2016082405000105

问题如下:

Suppose a portfolio has a value of $1,000,000 with 50 independent credit positions. Each position has the same amount of $20,000. Each of the credits has a default probability of 2% and a recovery rate of 0%. The credit portfolio has a default correlation equal to 0. The number of defaults is binomially distributed and the 95th percentile of the number of defaults is 3. What is the credit value at risk at the 95% confidence level for this credit portfolio?

选项:

A.

$20,000.

B.

$40,000.

C.

$60,000.

D.

$980,000.

解释:

B The loss given default is $60,000 [3 x ($1,000,000 I 50)]. The expected loss is equal to the portfolio value times and is $20,000 (0.02 x $1,000,000). The credit VaR is defined as the quantile of the credit loss less the expected loss of the portfolio. At the 95% confidence level, the credit VaR is equal to $40,000 ($60,000 minus the expected loss of $20,000).

老师严格一点讲这个题应该是用HS的方法计算吧

先用贝努力算一下0个违约、1个违约、2个违约、3个违约的累积概率,发现2个违约的概率是91.8%,3个违约的概率是97.6%;所以谨慎性原则,95%取3个,LDG=1。所以WCL=3*20000=60000,EL=20000,CR=-40000


什么情况下可以简化成 50*5%=2.5≈3,直接用这个方法算WCL呢?还是都可以这么算,不用求累计概率

1 个答案
已采纳答案

品职答疑小助手雍 · 2020年08月16日

嗨,努力学习的PZer你好:


我不知道你这个50*5%=2.5约等于3是哪来的额,这题提问很多次,我的回答如下:只是说95%损失的分位点也就是worst case loss是3个position违约的情形,也就是WCL是3*20000=60000,然后整体50个position的EL永远都是本金乘以PD*LGD=1000000*2%=20000,credit var等于wcl-el=40000

题目给了条件就直接用喽,考试一般不会让吭哧吭哧的算二项分布的累计概率


-------------------------------
努力的时光都是限量版,加油!