开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Roger · 2020年07月16日

问一道题:NO.PZ2019011002000007

问题如下:

Bond B is a 4-year annual coupon bond with a par value of $1000, and coupon rate of 6%. The risk-neutral probability of default (the hazard rate) for each date for the bond is 1.50% and the recovery rate is 25%.

Li is a credit analyst in a wealth management firm. He is considering a future interest rate volatility of 20%.

The current spot rates and forward rates are shown in the table below:

He built a binomial interest rate tree by using his volatility estimation and the current yield curve. The Binomial interest rate tree is shown below:

According to the information above, what is the fair value of Bond B?

选项:

A.

1098.14

B.

1144.63

C.

1251.35

解释:

A is correct

考点:使用二叉树对有风险的固定利率债券进行估值

解析:

首先利用二叉树模型,计算VND,(Value of the bond assuming No Default);

 

得到债券的VND为:1144.63

下面就要计算债券的CVA。

第一步计算二叉树上每期的exposure,

如Date 4的exposure为1060;

Date 3的exposure为:

0.1250×980.75+0.3750×1005.54+0.3750×1022.86

+0.1250×1034.81+60=1072.60

Date 2的exposure为:

0.25×1008.76+0.50×1043.43+0.25×1067.73+60

=1100.84

Date 1的exposure为:

0.50×1063.57+0.50×1099.96+60=1141.76

有了每一期的Exposure,可以计算LGD(Loss given default),有公式:

LGD = exposure × (1-recovery rate)

已知Hazard rate为1.500%,则每一期的POS(Probability of survival)为:

(100%-1.5%)1=98.5%

(100%-1.5%)2=97.0225%

(100%-1.5%)3=95.5672%

(100%-1.5%)4=94.1337%

(100%-1.5%)5=92.7217%

已知每一期的POS,则可以算出每一期的POD(Probability of default)

折现因子(DF)可以题干信息中获得;最终PV of expected loss = Expected loss ×DF。

我们可以得到如下表格:

所以该债券的Fair value为:1144.63 – 46.4915 = 1098.1385

老师,为什么我计算VND的时候,最后一步,用【(1063.5662*0.5+1099.9616*0.5)+60】/1+(-0.25%)求得的VND是1171.039923。和答案的相差挺大,是哪里出问题了?

1 个答案

吴昊_品职助教 · 2020年07月16日

同学你好:

你的列式没有问题,我按照你的列式,计算器按出来是1144.63。不妨再按一遍计算器,我估计你是按错了。

  • 1

    回答
  • 0

    关注
  • 382

    浏览
相关问题

NO.PZ2019011002000007 问题如下 BonB is a 4-yeannucoupon bonwith a pvalue of $1000, ancoupon rate of 6%. The risk-neutrprobability of fault (the hazarrate) for eate for the bonis 1.50% anthe recovery rate is 25%.Li is a cret analyst in a wealth management firm. He is consiring a future interest rate volatility of 20%.The current spot rates anforwarrates are shown in the table below:He built a binomiinterest rate tree using his volatility estimation anthe current yielcurve. The Binomiinterest rate tree is shown below:Accorng to the information above, whis the fair value of Bon A.1098.14 B.1144.63 C.1251.35 A is correct考点使用二叉树对有风险的固定利率债券进行估值解析首先利用二叉树模型,计算VN(Value of the bonassuming No fault); 得到债券的VN1144.63下面就要计算债券的CVA。第一步计算二叉树上每期的exposure,如te 4的exposure为1060;te 3的exposure为0.1250×980.75+0.3750×1005.54+0.3750×1022.86+0.1250×1034.81+60=1072.60te 2的exposure为0.25×1008.76+0.50×1043.43+0.25×1067.73+60=1100.84te 1的exposure为0.50×1063.57+0.50×1099.96+60=1141.76有了每一期的Exposure,可以计算LGLoss given fault),有公式LG= exposure × (1-recovery rate)已知Hazarrate为1.500%,则每一期的POS(Probability of survival)为(100%-1.5%)1=98.5%(100%-1.5%)2=97.0225%(100%-1.5%)3=95.5672%(100%-1.5%)4=94.1337%(100%-1.5%)5=92.7217%已知每一期的POS,则可以算出每一期的POProbability of fault)折现因子()可以题干信息中获得;最终PV of expecteloss = Expecteloss ×。我们可以得到如下表格所以该债券的Fair value为1144.63 – 46.4915 = 1098.1385 用spot rate将无违约的fair value计算出来,是1144.63,因为减去违约补偿,一定比1144.63小,所以选A,考试的时候是不是也可以类似这样选一个

2024-10-08 00:09 1 · 回答

NO.PZ2019011002000007 问题如下 BonB is a 4-yeannucoupon bonwith a pvalue of $1000, ancoupon rate of 6%. The risk-neutrprobability of fault (the hazarrate) for eate for the bonis 1.50% anthe recovery rate is 25%.Li is a cret analyst in a wealth management firm. He is consiring a future interest rate volatility of 20%.The current spot rates anforwarrates are shown in the table below:He built a binomiinterest rate tree using his volatility estimation anthe current yielcurve. The Binomiinterest rate tree is shown below:Accorng to the information above, whis the fair value of Bon A.1098.14 B.1144.63 C.1251.35 A is correct考点使用二叉树对有风险的固定利率债券进行估值解析首先利用二叉树模型,计算VN(Value of the bonassuming No fault); 得到债券的VN1144.63下面就要计算债券的CVA。第一步计算二叉树上每期的exposure,如te 4的exposure为1060;te 3的exposure为0.1250×980.75+0.3750×1005.54+0.3750×1022.86+0.1250×1034.81+60=1072.60te 2的exposure为0.25×1008.76+0.50×1043.43+0.25×1067.73+60=1100.84te 1的exposure为0.50×1063.57+0.50×1099.96+60=1141.76有了每一期的Exposure,可以计算LGLoss given fault),有公式LG= exposure × (1-recovery rate)已知Hazarrate为1.500%,则每一期的POS(Probability of survival)为(100%-1.5%)1=98.5%(100%-1.5%)2=97.0225%(100%-1.5%)3=95.5672%(100%-1.5%)4=94.1337%(100%-1.5%)5=92.7217%已知每一期的POS,则可以算出每一期的POProbability of fault)折现因子()可以题干信息中获得;最终PV of expecteloss = Expecteloss ×。我们可以得到如下表格所以该债券的Fair value为1144.63 – 46.4915 = 1098.1385 算No faut的价格不是用spot rate和forwarrate一期一期折现算的么?和二叉树那张表有什么关系?exposure是怎么算的没看懂?有二叉树和一开始学的简单案例区别在哪里?二叉树主要是用来求什么的?

2024-09-10 23:29 2 · 回答

NO.PZ2019011002000007 问题如下 BonB is a 4-yeannucoupon bonwith a pvalue of $1000, ancoupon rate of 6%. The risk-neutrprobability of fault (the hazarrate) for eate for the bonis 1.50% anthe recovery rate is 25%.Li is a cret analyst in a wealth management firm. He is consiring a future interest rate volatility of 20%.The current spot rates anforwarrates are shown in the table below:He built a binomiinterest rate tree using his volatility estimation anthe current yielcurve. The Binomiinterest rate tree is shown below:Accorng to the information above, whis the fair value of Bon A.1098.14 B.1144.63 C.1251.35 A is correct考点使用二叉树对有风险的固定利率债券进行估值解析首先利用二叉树模型,计算VN(Value of the bonassuming No fault); 得到债券的VN1144.63下面就要计算债券的CVA。第一步计算二叉树上每期的exposure,如te 4的exposure为1060;te 3的exposure为0.1250×980.75+0.3750×1005.54+0.3750×1022.86+0.1250×1034.81+60=1072.60te 2的exposure为0.25×1008.76+0.50×1043.43+0.25×1067.73+60=1100.84te 1的exposure为0.50×1063.57+0.50×1099.96+60=1141.76有了每一期的Exposure,可以计算LGLoss given fault),有公式LG= exposure × (1-recovery rate)已知Hazarrate为1.500%,则每一期的POS(Probability of survival)为(100%-1.5%)1=98.5%(100%-1.5%)2=97.0225%(100%-1.5%)3=95.5672%(100%-1.5%)4=94.1337%(100%-1.5%)5=92.7217%已知每一期的POS,则可以算出每一期的POProbability of fault)折现因子()可以题干信息中获得;最终PV of expecteloss = Expecteloss ×。我们可以得到如下表格所以该债券的Fair value为1144.63 – 46.4915 = 1098.1385 老师请问 te2的PV是怎么求出来的呢?

2024-08-29 10:19 1 · 回答

NO.PZ2019011002000007 问题如下 BonB is a 4-yeannucoupon bonwith a pvalue of $1000, ancoupon rate of 6%. The risk-neutrprobability of fault (the hazarrate) for eate for the bonis 1.50% anthe recovery rate is 25%.Li is a cret analyst in a wealth management firm. He is consiring a future interest rate volatility of 20%.The current spot rates anforwarrates are shown in the table below:He built a binomiinterest rate tree using his volatility estimation anthe current yielcurve. The Binomiinterest rate tree is shown below:Accorng to the information above, whis the fair value of Bon A.1098.14 B.1144.63 C.1251.35 A is correct考点使用二叉树对有风险的固定利率债券进行估值解析首先利用二叉树模型,计算VN(Value of the bonassuming No fault); 得到债券的VN1144.63下面就要计算债券的CVA。第一步计算二叉树上每期的exposure,如te 4的exposure为1060;te 3的exposure为0.1250×980.75+0.3750×1005.54+0.3750×1022.86+0.1250×1034.81+60=1072.60te 2的exposure为0.25×1008.76+0.50×1043.43+0.25×1067.73+60=1100.84te 1的exposure为0.50×1063.57+0.50×1099.96+60=1141.76有了每一期的Exposure,可以计算LGLoss given fault),有公式LG= exposure × (1-recovery rate)已知Hazarrate为1.500%,则每一期的POS(Probability of survival)为(100%-1.5%)1=98.5%(100%-1.5%)2=97.0225%(100%-1.5%)3=95.5672%(100%-1.5%)4=94.1337%(100%-1.5%)5=92.7217%已知每一期的POS,则可以算出每一期的POProbability of fault)折现因子()可以题干信息中获得;最终PV of expecteloss = Expecteloss ×。我们可以得到如下表格所以该债券的Fair value为1144.63 – 46.4915 = 1098.1385 这样算EL不是很复杂吗?用EXPOSURE*(1-RR)*lo接算是否可以,比如第四期就是1060*0.75*1.4335%=11.7963

2024-05-30 17:15 1 · 回答

NO.PZ2019011002000007问题如下BonB is a 4-yeannucoupon bonwith a pvalue of $1000, ancoupon rate of 6%. The risk-neutrprobability of fault (the hazarrate) for eate for the bonis 1.50% anthe recovery rate is 25%.Li is a cret analyst in a wealth management firm. He is consiring a future interest rate volatility of 20%.The current spot rates anforwarrates are shown in the table below:He built a binomiinterest rate tree using his volatility estimation anthe current yielcurve. The Binomiinterest rate tree is shown below:Accorng to the information above, whis the fair value of BonB?A.1098.14B.1144.63C.1251.35A is correct考点使用二叉树对有风险的固定利率债券进行估值解析首先利用二叉树模型,计算VN(Value of the bonassuming No fault); 得到债券的VN1144.63下面就要计算债券的CVA。第一步计算二叉树上每期的exposure,如te 4的exposure为1060;te 3的exposure为0.1250×980.75+0.3750×1005.54+0.3750×1022.86+0.1250×1034.81+60=1072.60te 2的exposure为0.25×1008.76+0.50×1043.43+0.25×1067.73+60=1100.84te 1的exposure为0.50×1063.57+0.50×1099.96+60=1141.76有了每一期的Exposure,可以计算LGLoss given fault),有公式LG= exposure × (1-recovery rate)已知Hazarrate为1.500%,则每一期的POS(Probability of survival)为(100%-1.5%)1=98.5%(100%-1.5%)2=97.0225%(100%-1.5%)3=95.5672%(100%-1.5%)4=94.1337%(100%-1.5%)5=92.7217%已知每一期的POS,则可以算出每一期的POProbability of fault)折现因子()可以题干信息中获得;最终PV of expecteloss = Expecteloss ×。我们可以得到如下表格所以该债券的Fair value为1144.63 – 46.4915 = 1098.1385请问每一期的po么计算呢?可否演示一下

2024-04-27 08:36 1 · 回答