问题如下:
Consider two stocks, A and B. Assume their annual returns are jointly normally distributed, the marginal distribution of each stock has mean 2% and standard deviation 10%, and the correlation is 0.9. What is the expected annual return of stock A if the annual return of stock B is 3%?
选项:
A.2%
B.2.9%
C.4.7%
D.1.1%
解释:
The information in this question can be used to construct a regression model of A on B. We have . Next, replacing \(\;R_B\) by 3% gives = 2% + 0.9(3% - 2%) = 2.9%.
看了下提问,思考了下简单说说我的想法
这个题和何老师课上讲的那个题虽然计算目标相同,求E(R_a|R_b=3%)=?但计算角度肯定不一样,原因如下:
这个题是从CAPM角度考虑,E(R_p)=R_f+b*(E(R_m)-R_f),题目上说marginal distribution of each stock has mean 2%,无论如何和两个股票都有2%的收益,相当于CAPM里的R_f的概念。
CAPM是个系统风险补偿模型,对于到题目里如果直接带入3%,实际就考虑重复了,因为3%里面的2%已经在截距项里面考虑过了,beta是对风险补偿的系数,所以其实不管R_b等于多少,在计算R_a的时候都要剔除2%。
何老师上课讲那个题是肯定不是从CAPM角度去考虑,是从R_a,R_b相关性的角度去考虑的,肯定不需要减去R_a,R_b中同时共有的收益嘛