开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

尼克内姆 · 2020年03月29日

问一道题:NO.PZ2016031201000048 [ CFA I ]

问题如下:

An at-the-money American call option on a stock that pays no dividends has three months remaining until expiration. The market value of the option will most likely be:

选项:

A.

less than its exercise value.

B.

equal to its exercise value.

C.

greater than its exercise value.

解释:

C is correct.

Prior to expiration, an American call option will typically have a value in the market that is greater than its exercise value. Although the American option is at-themoney and therefore has an exercise value of zero, the time value of the call option would likely lead to the option having a positive market value.

这是我自己写的的推到过程,请问下,对不对

1 个答案

xiaowan_品职助教 · 2020年03月29日

嗨,从没放弃的小努力你好:


同学你好,这道题思路是这样的,一个不分红的美式期权call,不会提前行权,和欧式是一样分析,

option value = intrinsic value(exercise value) + time value, intrinsic value =0,time value>0

所以option value>exercise value。

你的推导前半部分是不需要的,而且ATM是指现在的时间现货价格=执行价格,但是现货价格是会变化的,并不能推导出T时刻ST仍然等于执行价格哈。


-------------------------------
努力的时光都是限量版,加油!


  • 1

    回答
  • 1

    关注
  • 1096

    浏览
相关问题

NO.PZ2016031201000048 问题如下 at-the-money Americcall option on a stothpays no vin hthree months remaining until expiration. The market value of the option will most likely be: A.less thits exercise value. B.equto its exercise value. C.greater thits exercise value. C is correct.Prior to expiration, Americcall option will typically have a value in the market this greater thits exercise value. Although the Americoption is at-themoney antherefore hexercise value of zero, the time value of the call option woullikely leto the option having a positive market value. 中文解析market value = time value + intrinsic value(即execise value),该option目前是ATM状态,即execise value =0,而距离到期日还有3个月,time value 0,所以market value 0 , 选 如上

2023-03-06 21:39 1 · 回答

老师你好,可以完整讲一下这道题么?

2020-07-20 10:37 1 · 回答

问一个和解题不太相关的问题,在option pricing里面方法三有学过Americcall 的最小值和europecall是一样的,因为不可能卖的比euro call便宜即max(0,St-pv of X)但我看之前的解答里面,老师都提到Americcall = max(0,St - X)没有用euro call的最小值公式为什么呢

2019-03-07 14:49 1 · 回答

    Q1:我是这样想的at-the-moneyST=X, 此时t=t时刻,那么St=ST/(1+RF)^T-t, 那么St肯定小于ST(即X)。但是St,ST指的是unrlying asset的价格(错因之前一直把他们当做option在t时刻的市场价)。此时问题等价于,t=t时刻,比较option value=(St-X/(1+rf)^T-t)+time value与 X 之间的大小。又因为X=ST,所以intrinsic value=(St-X(1+rf)^T-t)= 【ST/(1+RF)^T-t】-【X/(1+rf)^T-t】=0。因此option value=time value 0=exercise value。Q2:下列 t=t时刻的期权价格option value是不是全部省略了time value?                     美式call   max(0,St-X/(1+rf)^(T-t))put   max(0,X-St)Q3:题目中说,at-the-money,exercise value=0,是不是因为exercise price=current priof unrlying,不赚不亏,行权无收益,所以exercise value=0(exercise price与exercise value不是一回事)?

2018-03-03 11:30 1 · 回答