开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Shawnxz · 2020年03月14日

问一道题:NO.PZ2018123101000086

问题如下:

Exhibit 1 shows par, spot, and one-year forward rates.

Bond 4 is a fixed-Rate Bonds of Alpha Corporation, with 1.55% annual coupon and callable at par without any lockout periods. The bond maturity is 3 years.

Based on the information above, the value of the embedded option in Bond 4 is closest to:

选项:

A.

nil.

B.

0.1906.

C.

0.3343.

解释:

C is correct.

考点:考察对含权债券的理解

解析:

债券4是可Callable。其价值为:

Value of callable bond = value of straight bond – value of call option on bond

因此,Embedded call option的价值为:

Value of call option on bond = Value of straight bond – Value of callable bond

利用Spot rate对该Straight bond进行定价为:

1.55(1.0100)1+1.55(1.012012)2+101.55(1.012515)3=100.8789\frac{1.55}{{(1.0100)}^1}+\frac{1.55}{{(1.012012)}^2}+\frac{101.55}{{(1.012515)}^3}=100.8789

而Callable bond的定价需要使用1-year forward rate,将债券的现金流从最后一期开始,依次向前一个节点折现,以判断折现值是否会触发行权价;使用表格中的Forward rate对Callable bond进行定价:

因此Call option的Value为:100.8789-100.5446=0.3343

请问embedded option value为何可以直接用forward rate求?不应该是用forward rate(middle rate)用公式求出HH和HL,然后再用二叉树从后往前推算吗?请问这个知识点在哪里?谢谢

1 个答案
已采纳答案

WallE_品职答疑助手 · 2020年03月14日

同学你好,

含权债券求价格,本来就要用foreward rate一期一期的往前折现,之前你看到的题目都是分不同情况的二叉树(sigma可能向上或向下波动), 这一题没有告诉你波动,也没有画出二叉树给你看,所以直接用foreward rate折现就可以

  • 1

    回答
  • 1

    关注
  • 422

    浏览
相关问题

NO.PZ2018123101000086 问题如下 Exhibit 1 shows par, spot, anone-yeforwarrates.Bon4 is a fixeRate Bon of Alpha Corporation, with 1.55% annucoupon ancallable pwithout any lockout perio. The bonmaturity is 3 years.Baseon the information above, the value of the embeeoption in Bon4 is closest to: A.nil. B.0.1906. C.0.8789. C is correct.考点考察对含权债券的理解解析债券4是可Callable。其价值为Value of callable bon= value of straight bon– value of call option on bon此,Embeecall option的价值为Value of call option on bon= Value of straight bon– Value of callable bon用Spot rate对该Straight bon行定价为1.55(1.0100)1+1.55(1.012012)2+101.55(1.012515)3=100.8789\frac{1.55}{{(1.0100)}^1}+\frac{1.55}{{(1.012012)}^2}+\frac{101.55}{{(1.012515)}^3}=100.8789(1.0100)11.55​+(1.012012)21.55​+(1.012515)3101.55​=100.8789无赎回保护期的可赎回债券的价值不能超过100,因此call option的价值为=100.8789–100=0.8789。 解析里Call option的Value是100.8789-100=0.8789,但是提问中回答是100.8789-100.5446=0.3343,哪种算法才是正确的呢?

2024-06-23 12:09 1 · 回答

NO.PZ2018123101000086 问题如下 Exhibit 1 shows par, spot, anone-yeforwarrates.Bon4 is a fixeRate Bon of Alpha Corporation, with 1.55% annucoupon ancallable pwithout any lockout perio. The bonmaturity is 3 years.Baseon the information above, the value of the embeeoption in Bon4 is closest to: A.nil. B.0.1906. C.0.3343. C is correct.考点考察对含权债券的理解解析债券4是可Callable。其价值为Value of callable bon= value of straight bon– value of call option on bon此,Embeecall option的价值为Value of call option on bon= Value of straight bon– Value of callable bon用Spot rate对该Straight bon行定价为1.55(1.0100)1+1.55(1.012012)2+101.55(1.012515)3=100.8789\frac{1.55}{{(1.0100)}^1}+\frac{1.55}{{(1.012012)}^2}+\frac{101.55}{{(1.012515)}^3}=100.8789(1.0100)11.55​+(1.012012)21.55​+(1.012515)3101.55​=100.8789而Callable bon定价需要使用1-yeforwarrate,将债券的现金流从最后一期开始,依次向前一个节点折现,以判断折现值是否会触发行权价;使用表格中的Forwarrate对Callable bon行定价因此Call option的Value为100.8789-100.5446=0.3343 相同的题目编号,NO.PZ201712110200000304这道题的题解The value of a callable bon(par) with no call protection periocannot excee100, thprior higher the bonwoulcallet=0时刻也能call

2024-05-10 14:28 1 · 回答

NO.PZ2018123101000086 问题如下 Exhibit 1 shows par, spot, anone-yeforwarrates.Bon4 is a fixeRate Bon of Alpha Corporation, with 1.55% annucoupon ancallable pwithout any lockout perio. The bonmaturity is 3 years.Baseon the information above, the value of the embeeoption in Bon4 is closest to: A.nil. B.0.1906. C.0.3343. C is correct.考点考察对含权债券的理解解析债券4是可Callable。其价值为Value of callable bon= value of straight bon– value of call option on bon此,Embeecall option的价值为Value of call option on bon= Value of straight bon– Value of callable bon用Spot rate对该Straight bon行定价为1.55(1.0100)1+1.55(1.012012)2+101.55(1.012515)3=100.8789\frac{1.55}{{(1.0100)}^1}+\frac{1.55}{{(1.012012)}^2}+\frac{101.55}{{(1.012515)}^3}=100.8789(1.0100)11.55​+(1.012012)21.55​+(1.012515)3101.55​=100.8789而Callable bon定价需要使用1-yeforwarrate,将债券的现金流从最后一期开始,依次向前一个节点折现,以判断折现值是否会触发行权价;使用表格中的Forwarrate对Callable bon行定价因此Call option的Value为100.8789-100.5446=0.3343 老师,二叉树求债券时,二叉树的利率都是forwarrate对吗?

2024-04-25 19:15 1 · 回答

NO.PZ2018123101000086 问题如下 Exhibit 1 shows par, spot, anone-yeforwarrates.Bon4 is a fixeRate Bon of Alpha Corporation, with 1.55% annucoupon ancallable pwithout any lockout perio. The bonmaturity is 3 years.Baseon the information above, the value of the embeeoption in Bon4 is closest to: A.nil. B.0.1906. C.0.3343. C is correct.考点考察对含权债券的理解解析债券4是可Callable。其价值为Value of callable bon= value of straight bon– value of call option on bon此,Embeecall option的价值为Value of call option on bon= Value of straight bon– Value of callable bon用Spot rate对该Straight bon行定价为1.55(1.0100)1+1.55(1.012012)2+101.55(1.012515)3=100.8789\frac{1.55}{{(1.0100)}^1}+\frac{1.55}{{(1.012012)}^2}+\frac{101.55}{{(1.012515)}^3}=100.8789(1.0100)11.55​+(1.012012)21.55​+(1.012515)3101.55​=100.8789而Callable bon定价需要使用1-yeforwarrate,将债券的现金流从最后一期开始,依次向前一个节点折现,以判断折现值是否会触发行权价;使用表格中的Forwarrate对Callable bon行定价因此Call option的Value为100.8789-100.5446=0.3343 用forwarrate给含权债券估值是考纲内容吗?对应基础班讲义哪个位置?

2024-03-12 22:19 4 · 回答

NO.PZ2018123101000086 问题如下 Exhibit 1 shows par, spot, anone-yeforwarrates.Bon4 is a fixeRate Bon of Alpha Corporation, with 1.55% annucoupon ancallable pwithout any lockout perio. The bonmaturity is 3 years.Baseon the information above, the value of the embeeoption in Bon4 is closest to: A.nil. B.0.1906. C.0.3343. C is correct.考点考察对含权债券的理解解析债券4是可Callable。其价值为Value of callable bon= value of straight bon– value of call option on bon此,Embeecall option的价值为Value of call option on bon= Value of straight bon– Value of callable bon用Spot rate对该Straight bon行定价为1.55(1.0100)1+1.55(1.012012)2+101.55(1.012515)3=100.8789\frac{1.55}{{(1.0100)}^1}+\frac{1.55}{{(1.012012)}^2}+\frac{101.55}{{(1.012515)}^3}=100.8789(1.0100)11.55​+(1.012012)21.55​+(1.012515)3101.55​=100.8789而Callable bon定价需要使用1-yeforwarrate,将债券的现金流从最后一期开始,依次向前一个节点折现,以判断折现值是否会触发行权价;使用表格中的Forwarrate对Callable bon行定价因此Call option的Value为100.8789-100.5446=0.3343 这什么原理?不用二叉树也能求含权bon格了吗?怎么没印象课上讲过?

2024-01-23 22:26 1 · 回答