开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Viva · 2020年03月07日

问一道题:NO.PZ2016031101000007

问题如下:

A European equity composite contains three portfolios. For convenience, the cash flow weighting factors are presented below.

A. Calculate the returns of Portfolio A, Portfolio B, and Portfolio C for the month of August using the Modified Dietz formula.

B. Calculate the August composite return by asset-weighting the individual portfolio returns using beginning-of-period values.

C. Calculate the August composite return by asset-weighting the individual portfolio returns using a method that reflects both beginning-of-period values and external cash flows.

选项:

解释:

A.

Portfolio returns:

lrA=85.374.97.574.9+(7.5×0.613)=2.979.5=0.0365=3.65%{l}r_A=\frac{85.3-74.9-7.5}{74.9+(7.5\times0.613)}=\frac{2.9}{79.5}=0.0365=3.65\%\\

rB=109.8127.6(15)(5)127.6+(15×0.742)+(5×0.387)=2.2114.535=0.0192=1.92%r_B=\frac{109.8-127.6-(-15)-(-5)}{127.6+(-15\times0.742)+(-5\times0.387)}=\frac{2.2}{114.535}=0.0192=1.92\%

rC=128.4110.415110.4+(15×0.387)=3116.205=0.0258=2.58%r_C=\frac{128.4-110.4-15}{110.4+(15\times0.387)}=\frac3{116.205}=0.0258=2.58\%

B.

To calculate the composite return based on beginning assets, first determine the percent of beginning composite assets represented by each portfolio; then determine the weighted-average return for the month:

Beginning composite assets = 74.9 + 127.6 + 110.4 = 312.9

Portfolio A = 74.9/312.9 = 0.239 = 23.9%

Portfolio B = 127.6/312.9 = 0.408 = 40.8%

Portfolio C = 110.4/312.9 = 0.353 = 35.3%

                              lrComp=(0.0365×0.239)+(0.0192×0.408)+(0.0258×0.353)=0.0257=2.57%{l}r_{Comp}=(0.0365\times0.239)+(0.0192\times0.408)+(0.0258\times0.353)\\=0.0257=2.57\%

C.

To calculate the composite return based on beginning assets plus cash flows, first use the denominator of the Modified Dietz formula to determine the percentage of total beginning assets plus weighted cash flows represented by each portfolio, and then calculate the weighted-average return:

Beginning composite assets + Weighted cash flows = [74.9 + (7.5 × 0.613)] + [127.6 + (–15 × 0.742) + (–5×0.387)] + [110.4 + (15 × 0.387)] = 79.5 + 114.535 + 116.205 = 310.24

Portfolio A = 79.5/310.24 = 0.256 = 25.6%

Portfolio B = 114.535/310.24 = 0.369 = 36.9%

Portfolio C = 116.205/310.24 = 0.375 = 37.5%

lrComp=(0.0365×0.256)+(0.0192×0.369)+(0.0258×0.375)=0.0261=2.61%{l}r_{Comp}=(0.0365\times0.256)+(0.0192\times0.369)+(0.0258\times0.375)\\=0.0261=2.61\%

A mathematically equivalent method consists simply in summing beginning assets and intra-period external cash flows, treating the entire composite as though it were a single portfolio and then computing the return directly with the Modified Dietz formula.

lrComp=323.5312.9(15+7.5+10)312.9+[(15)×0.742+7.5×0.613+10×0.387]=0.0261=2.61%{l}r_{Comp}=\frac{323.5-312.9-(-15+7.5+10)}{312.9+\lbrack(-15)\times0.742+7.5\times0.613+10\times0.387]}\\=0.0261=2.61\%

为什么5不算large CF,判断标准是?

1 个答案

Olive_品职助教 · 2020年03月08日

嗨,从没放弃的小努力你好:


同学你说的是这一步吗,考虑了现金流5了,10就是-5+15的结果。是8月19号现金流的加总。


-------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!