开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

薛真 · 2020年02月25日

问一道题:NO.PZ2020010304000008

问题如下:

If X1 and X2 both have univariate normal distributions, is the joint distribution of X1 and X2 a bivariate normal?

选项:

解释:

Not necessarily.

It is possible that the joint is not a bivariate normal if the dependence structure between X1 and X2 is different from what is possible with a normal. The distribution that generated the data points plotted below has normal marginals, but this pattern of dependence is not possible in a normal that always appear elliptical.

翻一下答案

1 个答案

orange品职答疑助手 · 2020年02月25日

同学你好,现在恢复正常了吧?

  • 1

    回答
  • 0

    关注
  • 435

    浏览
相关问题

NO.PZ2020010304000008问题如下 If X1 anX2 both have univariate normstributions, is the joint stribution of X1 anX2 a bivariate normal?Not necessarily. It is possible ththe joint is not a bivariate normif the pennstructure between X1 anX2 is fferent from whis possible with a normal. The stribution thgeneratethe ta points plottebelow hnormmarginals, but this pattern of pennis not possible in a normthalways appeelliptical.“两个变量各自服从正态分布,这两个变量的联合分布不一定服从正态分布,得有前提条件就是它们是互相独立的或者相关性为0(事实上相关性为0就可以了,互相独立的条件更强)。”老师好,这里的“事实上相关性为0就可以了”是指p,也就是无线性关系就行?

2024-05-27 11:30 1 · 回答

NO.PZ2020010304000008 问题如下 If X1 anX2 both have univariate normstributions, is the joint stribution of X1 anX2 a bivariate normal? Not necessarily. It is possible ththe joint is not a bivariate normif the pennstructure between X1 anX2 is fferent from whis possible with a normal. The stribution thgeneratethe ta points plottebelow hnormmarginals, but this pattern of pennis not possible in a normthalways appeelliptical. 这道题是什么意思?考点是什么?

2024-01-14 23:52 2 · 回答

NO.PZ2020010304000008 问题如下 If X1 anX2 both have univariate normstributions, is the joint stribution of X1 anX2 a bivariate normal? Not necessarily. It is possible ththe joint is not a bivariate normif the pennstructure between X1 anX2 is fferent from whis possible with a normal. The stribution thgeneratethe ta points plottebelow hnormmarginals, but this pattern of pennis not possible in a normthalways appeelliptical.

2022-05-16 19:29 1 · 回答

可以一下答案么

2020-02-10 14:51 2 · 回答