开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Drink H · 2020年02月15日

问一道题:NO.PZ202001080100002601

* 问题详情,请 查看题干

问题如下:

a. Apply OLS linear regression to find the parameters for the following equation:

Yi=α+β1X1i+β2X2i+ϵiY_i = \alpha + \beta_1X_{1i} + \beta_2X_{2i} + \epsilon_i

选项:

解释:

Start by setting up the basic calculations:

μY=2.823,μX1=0.91,μX2=0.101,\mu_Y=-2.823, \mu_{X_1}=-0.91, \mu_{X_2}=-0.101,

σY2=7.58,σX12=1.345,σX22=0.911\sigma_Y^2=7.58, \sigma_{X_1}^2=1.345, \sigma_{X_2}^2=0.911

σX1X2=0.172,σYσX1=2.729,σYσX2=1.434\sigma_{X_1X_2}=-0.172, \sigma_Y\sigma_{X_1}=2.729, \sigma_Y\sigma{X_2}=-1.434

First regressing on the last independent variable:

X1i=δ0+δ1X2i+X1i~X_{1i}=\delta_0+\delta_1X_{2i}+\widetilde{X_{1i}}

δ1=σX1X2σX22=0.172/0.911=0.189\delta_1=\frac{\sigma_{X_1X_2}}{\sigma_{X_2}^2}=-0.172/0.911=0.189

δ0=μX1δ1μX2=0.910.189(0.101)=0.929\delta_0=\mu_{X_1}-\delta_1\mu_{X_2}=-0.91-0.189*(-0.101)=-0.929

Yi=γ0+γ1X2i+Yi~Y_i=\gamma_0+\gamma_1X_{2i}+\widetilde{Y_i}

γ1=σYX2/σX22=1.434/0.911=1.574\gamma_1=\sigma_{YX_2}/\sigma_{X_2}^2=-1.434/0.911=-1.574

γ0=μYγ1μX2=2.823(1.5740.101)=2.982\gamma_0=\mu_Y-\gamma_1\mu_{X_2}=-2.823-(-1.574*-0.101)=-2.982

so β1=Cov()Y~,X1~σX1~2=2.459/1.313=1.873\beta_1=\frac{Cov()\widetilde{Y}, \widetilde{X_1}}{\sigma_{\widetilde{X_1}}^2}=2.459/1.313=1.873

Repeating the process for X2X_2

β2=1.085/0.889=1.221\beta_2=-1.085/0.889=-1.221

Tying things together:

Yiβ1X1iβ2X2i=α+ϵi=1.873X1i+1.221X2iY_i-\beta_1X_{1i}-\beta_2X_{2i}=\alpha+\epsilon_i=-1.873X_{1i}+1.221X_{2i}

So α=1.242\alpha = -1.242, and the variance of the residuals is 0.718.

Finally, asserting the presumption of normality:

Yi=1.242+1.873X1i1.221X2i+ϵi,ϵi N(0,0.718)Y_i=-1.242+1.873*X_{1i}-1.221*X_{2i}+\epsilon_i, \epsilon_i~N(0, 0.718)

Note that the variance for ϵi\epsilon_i is biased and the unbiased figure is this figure multiplied by 10/(10 - 3) or 1.206.









这题计算量那么大,考试应该不会考吧

1 个答案
已采纳答案

orange品职答疑助手 · 2020年02月15日

同学你好,是的,我也觉得应该不会考,因为咱们计算器只能算一元线性回归的系数。这是原版书的题啦,原版书有些题是有点偏

  • 1

    回答
  • 0

    关注
  • 397

    浏览
相关问题

NO.PZ202001080100002601 问题如下 Apply OLS lineregression to finthe parameters for the following equation: Yi=α+β1X1i+β2X2i+ϵiY_i = \alpha + \beta_1X_{1i} + \beta_2X_{2i} + \epsilon_iYi​=α+β1​X1i​+β2​X2i​+ϵi​ Start setting up the basic calculations: μY=−2.823,μX1=−0.91,μX2=−0.101,\mu_Y=-2.823, \mu_{X_1}=-0.91, \mu_{X_2}=-0.101,μY​=−2.823,μX1​​=−0.91,μX2​​=−0.101,σY2=7.58,σX12=1.345,σX22=0.911\sigma_Y^2=7.58, \sigma_{X_1}^2=1.345, \sigma_{X_2}^2=0.911σY2​=7.58,σX1​2​=1.345,σX2​2​=0.911σX1X2=−0.172,σYσX1=2.729,σYσX2=−1.434\sigma_{X_1X_2}=-0.172, \sigma_Y\sigma_{X_1}=2.729, \sigma_Y\sigma{X_2}=-1.434σX1​X2​​=−0.172,σY​σX1​​=2.729,σY​σX2​=−1.434First regressing on the last inpennt variable: X1i=δ0+δ1X2i+X1i~X_{1i}=\lta_0+\lta_1X_{2i}+\witil{X_{1i}}X1i​=δ0​+δ1​X2i​+X1i​​δ1=σX1X2σX22=−0.172/0.911=0.189\lta_1=\frac{\sigma_{X_1X_2}}{\sigma_{X_2}^2}=-0.172/0.911=0.189δ1​=σX2​2​σX1​X2​​​=−0.172/0.911=0.189δ0=μX1−δ1μX2=−0.91−0.189∗(−0.101)=−0.929\lta_0=\mu_{X_1}-\lta_1\mu_{X_2}=-0.91-0.189*(-0.101)=-0.929δ0​=μX1​​−δ1​μX2​​=−0.91−0.189∗(−0.101)=−0.929Yi=γ0+γ1X2i+Yi~Y_i=\gamma_0+\gamma_1X_{2i}+\witil{Y_i}Yi​=γ0​+γ1​X2i​+Yi​​γ1=σYX2/σX22=−1.434/0.911=−1.574\gamma_1=\sigma_{YX_2}/\sigma_{X_2}^2=-1.434/0.911=-1.574γ1​=σYX2​​/σX2​2​=−1.434/0.911=−1.574γ0=μY−γ1μX2=−2.823−(−1.574∗−0.101)=−2.982\gamma_0=\mu_Y-\gamma_1\mu_{X_2}=-2.823-(-1.574*-0.101)=-2.982γ0​=μY​−γ1​μX2​​=−2.823−(−1.574∗−0.101)=−2.982so β1=Cov()Y~,X1~σX1~2=2.459/1.313=1.873\beta_1=\frac{Cov()\witil{Y}, \witil{X_1}}{\sigma_{\witil{X_1}}^2}=2.459/1.313=1.873β1​=σX1​​2​Cov()Y,X1​​​=2.459/1.313=1.873Repeating the process for X2X_2X2​β2=−1.085/0.889=−1.221\beta_2=-1.085/0.889=-1.221β2​=−1.085/0.889=−1.221Tying things together:Yi−β1X1i−β2X2i=α+ϵi=−1.873X1i+1.221X2iY_i-\beta_1X_{1i}-\beta_2X_{2i}=\alpha+\epsilon_i=-1.873X_{1i}+1.221X_{2i}Yi​−β1​X1i​−β2​X2i​=α+ϵi​=−1.873X1i​+1.221X2i​So α=−1.242\alpha = -1.242α=−1.242, anthe varianof the resials is 0.718.Finally, asserting the presumption of normality:Yi=−1.242+1.873∗X1i−1.221∗X2i+ϵi,ϵi N(0,0.718)Y_i=-1.242+1.873*X_{1i}-1.221*X_{2i}+\epsilon_i, \epsilon_i~N(0, 0.718)Yi​=−1.242+1.873∗X1i​−1.221∗X2i​+ϵi​,ϵi​ N(0,0.718)Note ththe varianfor ϵi\epsilon_iϵi​ is biaseanthe unbiasefigure is this figure multiplie10/(10 - 3) or 1.206. 请问红框中的是怎么计算出来的?按照上面的公式x残差数算出来对不上,y残差那一列是可以对的上的。

2024-05-17 12:58 1 · 回答

NO.PZ202001080100002601 问题如下 Apply OLS lineregression to finthe parameters for the following equation: Yi=α+β1X1i+β2X2i+ϵiY_i = \alpha + \beta_1X_{1i} + \beta_2X_{2i} + \epsilon_iYi​=α+β1​X1i​+β2​X2i​+ϵi​ Start setting up the basic calculations: μY=−2.823,μX1=−0.91,μX2=−0.101,\mu_Y=-2.823, \mu_{X_1}=-0.91, \mu_{X_2}=-0.101,μY​=−2.823,μX1​​=−0.91,μX2​​=−0.101,σY2=7.58,σX12=1.345,σX22=0.911\sigma_Y^2=7.58, \sigma_{X_1}^2=1.345, \sigma_{X_2}^2=0.911σY2​=7.58,σX1​2​=1.345,σX2​2​=0.911σX1X2=−0.172,σYσX1=2.729,σYσX2=−1.434\sigma_{X_1X_2}=-0.172, \sigma_Y\sigma_{X_1}=2.729, \sigma_Y\sigma{X_2}=-1.434σX1​X2​​=−0.172,σY​σX1​​=2.729,σY​σX2​=−1.434First regressing on the last inpennt variable: X1i=δ0+δ1X2i+X1i~X_{1i}=\lta_0+\lta_1X_{2i}+\witil{X_{1i}}X1i​=δ0​+δ1​X2i​+X1i​​δ1=σX1X2σX22=−0.172/0.911=0.189\lta_1=\frac{\sigma_{X_1X_2}}{\sigma_{X_2}^2}=-0.172/0.911=0.189δ1​=σX2​2​σX1​X2​​​=−0.172/0.911=0.189δ0=μX1−δ1μX2=−0.91−0.189∗(−0.101)=−0.929\lta_0=\mu_{X_1}-\lta_1\mu_{X_2}=-0.91-0.189*(-0.101)=-0.929δ0​=μX1​​−δ1​μX2​​=−0.91−0.189∗(−0.101)=−0.929Yi=γ0+γ1X2i+Yi~Y_i=\gamma_0+\gamma_1X_{2i}+\witil{Y_i}Yi​=γ0​+γ1​X2i​+Yi​​γ1=σYX2/σX22=−1.434/0.911=−1.574\gamma_1=\sigma_{YX_2}/\sigma_{X_2}^2=-1.434/0.911=-1.574γ1​=σYX2​​/σX2​2​=−1.434/0.911=−1.574γ0=μY−γ1μX2=−2.823−(−1.574∗−0.101)=−2.982\gamma_0=\mu_Y-\gamma_1\mu_{X_2}=-2.823-(-1.574*-0.101)=-2.982γ0​=μY​−γ1​μX2​​=−2.823−(−1.574∗−0.101)=−2.982so β1=Cov()Y~,X1~σX1~2=2.459/1.313=1.873\beta_1=\frac{Cov()\witil{Y}, \witil{X_1}}{\sigma_{\witil{X_1}}^2}=2.459/1.313=1.873β1​=σX1​​2​Cov()Y,X1​​​=2.459/1.313=1.873Repeating the process for X2X_2X2​β2=−1.085/0.889=−1.221\beta_2=-1.085/0.889=-1.221β2​=−1.085/0.889=−1.221Tying things together:Yi−β1X1i−β2X2i=α+ϵi=−1.873X1i+1.221X2iY_i-\beta_1X_{1i}-\beta_2X_{2i}=\alpha+\epsilon_i=-1.873X_{1i}+1.221X_{2i}Yi​−β1​X1i​−β2​X2i​=α+ϵi​=−1.873X1i​+1.221X2i​So α=−1.242\alpha = -1.242α=−1.242, anthe varianof the resials is 0.718.Finally, asserting the presumption of normality:Yi=−1.242+1.873∗X1i−1.221∗X2i+ϵi,ϵi N(0,0.718)Y_i=-1.242+1.873*X_{1i}-1.221*X_{2i}+\epsilon_i, \epsilon_i~N(0, 0.718)Yi​=−1.242+1.873∗X1i​−1.221∗X2i​+ϵi​,ϵi​ N(0,0.718)Note ththe varianfor ϵi\epsilon_iϵi​ is biaseanthe unbiasefigure is this figure multiplie10/(10 - 3) or 1.206. 这里计算是不是不对?计算出来是-0.8909?

2024-05-17 12:16 1 · 回答

NO.PZ202001080100002601 问题如下 Apply OLS lineregression to finthe parameters for the following equation: Yi=α+β1X1i+β2X2i+ϵiY_i = \alpha + \beta_1X_{1i} + \beta_2X_{2i} + \epsilon_iYi​=α+β1​X1i​+β2​X2i​+ϵi​ Start setting up the basic calculations: μY=−2.823,μX1=−0.91,μX2=−0.101,\mu_Y=-2.823, \mu_{X_1}=-0.91, \mu_{X_2}=-0.101,μY​=−2.823,μX1​​=−0.91,μX2​​=−0.101,σY2=7.58,σX12=1.345,σX22=0.911\sigma_Y^2=7.58, \sigma_{X_1}^2=1.345, \sigma_{X_2}^2=0.911σY2​=7.58,σX1​2​=1.345,σX2​2​=0.911σX1X2=−0.172,σYσX1=2.729,σYσX2=−1.434\sigma_{X_1X_2}=-0.172, \sigma_Y\sigma_{X_1}=2.729, \sigma_Y\sigma{X_2}=-1.434σX1​X2​​=−0.172,σY​σX1​​=2.729,σY​σX2​=−1.434First regressing on the last inpennt variable: X1i=δ0+δ1X2i+X1i~X_{1i}=\lta_0+\lta_1X_{2i}+\witil{X_{1i}}X1i​=δ0​+δ1​X2i​+X1i​​δ1=σX1X2σX22=−0.172/0.911=0.189\lta_1=\frac{\sigma_{X_1X_2}}{\sigma_{X_2}^2}=-0.172/0.911=0.189δ1​=σX2​2​σX1​X2​​​=−0.172/0.911=0.189δ0=μX1−δ1μX2=−0.91−0.189∗(−0.101)=−0.929\lta_0=\mu_{X_1}-\lta_1\mu_{X_2}=-0.91-0.189*(-0.101)=-0.929δ0​=μX1​​−δ1​μX2​​=−0.91−0.189∗(−0.101)=−0.929Yi=γ0+γ1X2i+Yi~Y_i=\gamma_0+\gamma_1X_{2i}+\witil{Y_i}Yi​=γ0​+γ1​X2i​+Yi​​γ1=σYX2/σX22=−1.434/0.911=−1.574\gamma_1=\sigma_{YX_2}/\sigma_{X_2}^2=-1.434/0.911=-1.574γ1​=σYX2​​/σX2​2​=−1.434/0.911=−1.574γ0=μY−γ1μX2=−2.823−(−1.574∗−0.101)=−2.982\gamma_0=\mu_Y-\gamma_1\mu_{X_2}=-2.823-(-1.574*-0.101)=-2.982γ0​=μY​−γ1​μX2​​=−2.823−(−1.574∗−0.101)=−2.982so β1=Cov()Y~,X1~σX1~2=2.459/1.313=1.873\beta_1=\frac{Cov()\witil{Y}, \witil{X_1}}{\sigma_{\witil{X_1}}^2}=2.459/1.313=1.873β1​=σX1​​2​Cov()Y,X1​​​=2.459/1.313=1.873Repeating the process for X2X_2X2​β2=−1.085/0.889=−1.221\beta_2=-1.085/0.889=-1.221β2​=−1.085/0.889=−1.221Tying things together:Yi−β1X1i−β2X2i=α+ϵi=−1.873X1i+1.221X2iY_i-\beta_1X_{1i}-\beta_2X_{2i}=\alpha+\epsilon_i=-1.873X_{1i}+1.221X_{2i}Yi​−β1​X1i​−β2​X2i​=α+ϵi​=−1.873X1i​+1.221X2i​So α=−1.242\alpha = -1.242α=−1.242, anthe varianof the resials is 0.718.Finally, asserting the presumption of normality:Yi=−1.242+1.873∗X1i−1.221∗X2i+ϵi,ϵi N(0,0.718)Y_i=-1.242+1.873*X_{1i}-1.221*X_{2i}+\epsilon_i, \epsilon_i~N(0, 0.718)Yi​=−1.242+1.873∗X1i​−1.221∗X2i​+ϵi​,ϵi​ N(0,0.718)Note ththe varianfor ϵi\epsilon_iϵi​ is biaseanthe unbiasefigure is this figure multiplie10/(10 - 3) or 1.206. 这题答案有错误把。。。。

2024-05-17 11:09 1 · 回答

二元的系数公式是什么?

2020-03-07 15:55 3 · 回答