开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Drink H · 2020年01月28日

问一道题:NO.PZ2020010801000025 [ FRM I ]

问题如下图:

看不懂答案解析,麻烦再解释一下?

2 个答案

品职答疑小助手雍 · 2020年02月06日

同学你好,这里本来一周有五天,也就是5个variable,这样需要用4个dummy variable来替代,这样解释就变型成为了4个dummy variable的模型,然后用F检验,也就是讲义213页那个公式就行了。

orange品职答疑助手 · 2020年02月06日

同学你好,一周有5天,所以一开始先写了一个有五个dummy variables的model. 但是由哑变量的性质,其实这5个哑变量用4个dummy variables就可以了,所以解析又变了一下型,写了一个有四个dummy variables的model, 然后说这俩是equivalent的。

之后,就变成了检验那4个系数是否相等,这得用F检验。所以再套F检验的公式,去得出了答案。

这题比较难,难点是5个哑变量运用哑变量的性质把它变换成了4个,这个内容是计量里比较细的知识点,不在我们考纲范围内了。这题弄清检验几个变量应该用F检验,并记住F检验的公式就够了。

  • 2

    回答
  • 0

    关注
  • 536

    浏览
相关问题

NO.PZ2020010801000025 问题如下 A mol westimateusing ily ta from the S P 500 from 1977 until 2017 whiinclufive y-of-the-week mmies (n = 10,087). The R2R^2R2 from this regression w0.000599. Is there evinththe mevaries with the y of the week? The mol estimateis Yi=β1+β2+β3+β4+β5+ϵiY_i = \beta_11 + \beta_22 + \beta_33 + \beta_44 + \beta_55 + \epsilon_iYi​=β1​​+β2​​+β3​​+β4​​+β5​​+ϵi​, where is a mmy thtakes the value 1 if the inx of the weeky is i (e.g., Mony = 1, Tuesy = 2, c). The restriction is thH0:β1=β2=β3=β4=β5H_0:\beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5H0​:β1​=β2​=β3​=β4​=β5​ so there this is no y-of-the-week effect. This mol cequivalently written Yi=μ+δ2+δ3+δ4+δ5+ϵiY_i = \mu + \lta_22 + \lta_33 + \lta_44 + \lta_55 + \epsilon_iYi​=μ+δ2​​+δ3​​+δ4​​+δ5​​+ϵi​, therefore, here the null is H0:δ2=δ3=δ4=δ5H_0:\lta_2 = \lta_3 = \lta_4 = \lta_5H0​:δ2​=δ3​=δ4​=δ5​. In the two mols, μ=β1\mu = \beta_1μ=β1​, anμ+δi=βi\mu + \lta_i = \beta_iμ+δi​=βi​. The seconform of the mol is a more stanrnull for F-stat. The F-stof the regression is(R2−0)/4(1−R2)/(n−5)=0.000599/4(1−0.000599)/(10087−5)=1.51\frac{(R^2-0)/4}{(1-R^2)/(n-5)}=\frac{0.000599/4}{(1-0.000599)/(10087-5)}=1.51(1−R2)/(n−5)(R2−0)/4​=(1−0.000599)/(10087−5)0.000599/4​=1.51The stribution is F4,10082F_{4,10082}F4,10082​ anthe criticvalue using a 5% size is 2.37. The test statistic is less ththe criticvalue, therefore, the null thall effects are 0 is not rejecte 请问一下F检验分子不是应该等于(UnrestricteR 2 - RestricteR2)/q 吗。题目说了unrestricteR2但并没有说restricteR2是多少。为什么公式里面直接就把restricteR2 忽略掉了呢

2024-05-24 11:45 1 · 回答

NO.PZ2020010801000025 问题如下 A mol westimateusing ily ta from the S P 500 from 1977 until 2017 whiinclufive y-of-the-week mmies (n = 10,087). The R2R^2R2 from this regression w0.000599. Is there evinththe mevaries with the y of the week? The mol estimateis Yi=β1+β2+β3+β4+β5+ϵiY_i = \beta_11 + \beta_22 + \beta_33 + \beta_44 + \beta_55 + \epsilon_iYi​=β1​​+β2​​+β3​​+β4​​+β5​​+ϵi​, where is a mmy thtakes the value 1 if the inx of the weeky is i (e.g., Mony = 1, Tuesy = 2, c). The restriction is thH0:β1=β2=β3=β4=β5H_0:\beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5H0​:β1​=β2​=β3​=β4​=β5​ so there this is no y-of-the-week effect. This mol cequivalently written Yi=μ+δ2+δ3+δ4+δ5+ϵiY_i = \mu + \lta_22 + \lta_33 + \lta_44 + \lta_55 + \epsilon_iYi​=μ+δ2​​+δ3​​+δ4​​+δ5​​+ϵi​, therefore, here the null is H0:δ2=δ3=δ4=δ5H_0:\lta_2 = \lta_3 = \lta_4 = \lta_5H0​:δ2​=δ3​=δ4​=δ5​. In the two mols, μ=β1\mu = \beta_1μ=β1​, anμ+δi=βi\mu + \lta_i = \beta_iμ+δi​=βi​. The seconform of the mol is a more stanrnull for F-stat. The F-stof the regression is(R2−0)/4(1−R2)/(n−5)=0.000599/4(1−0.000599)/(10087−5)=1.51\frac{(R^2-0)/4}{(1-R^2)/(n-5)}=\frac{0.000599/4}{(1-0.000599)/(10087-5)}=1.51(1−R2)/(n−5)(R2−0)/4​=(1−0.000599)/(10087−5)0.000599/4​=1.51The stribution is F4,10082F_{4,10082}F4,10082​ anthe criticvalue using a 5% size is 2.37. The test statistic is less ththe criticvalue, therefore, the null thall effects are 0 is not rejecte 请问第二个公式是怎么推导出来的?为什么少了一个regressor

2024-05-21 15:27 3 · 回答

NO.PZ2020010801000025问题如下A mol westimateusing ily ta from the S P 500 from 1977 until 2017 whiinclufive y-of-the-week mmies (n = 10,087). The R2R^2R2 from this regression w0.000599. Is there evinththe mevaries with the y of the week?The mol estimateis Yi=β1+β2+β3+β4+β5+ϵiY_i = \beta_11 + \beta_22 + \beta_33 + \beta_44 + \beta_55 + \epsilon_iYi​=β1​​+β2​​+β3​​+β4​​+β5​​+ϵi​, where is a mmy thtakes the value 1 if the inx of the weeky is i (e.g., Mony = 1, Tuesy = 2, c). The restriction is thH0:β1=β2=β3=β4=β5H_0:\beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5H0​:β1​=β2​=β3​=β4​=β5​ so there this is no y-of-the-week effect. This mol cequivalently written Yi=μ+δ2+δ3+δ4+δ5+ϵiY_i = \mu + \lta_22 + \lta_33 + \lta_44 + \lta_55 + \epsilon_iYi​=μ+δ2​​+δ3​​+δ4​​+δ5​​+ϵi​, therefore, here the null is H0:δ2=δ3=δ4=δ5H_0:\lta_2 = \lta_3 = \lta_4 = \lta_5H0​:δ2​=δ3​=δ4​=δ5​. In the two mols, μ=β1\mu = \beta_1μ=β1​, anμ+δi=βi\mu + \lta_i = \beta_iμ+δi​=βi​. The seconform of the mol is a more stanrnull for F-stat. The F-stof the regression is(R2−0)/4(1−R2)/(n−5)=0.000599/4(1−0.000599)/(10087−5)=1.51\frac{(R^2-0)/4}{(1-R^2)/(n-5)}=\frac{0.000599/4}{(1-0.000599)/(10087-5)}=1.51(1−R2)/(n−5)(R2−0)/4​=(1−0.000599)/(10087−5)0.000599/4​=1.51The stribution is F4,10082F_{4,10082}F4,10082​ anthe criticvalue using a 5% size is 2.37. The test statistic is less ththe criticvalue, therefore, the null thall effects are 0 is not rejecte在unrestricte设中没有常量,有5个variables,那么在最后一问中n-ku-1为什么不是n-5-1而是n-5呢?

2023-09-05 17:44 1 · 回答

NO.PZ2020010801000025 问题如下 A mol westimateusing ily ta from the S P 500 from 1977 until 2017 whiinclufive y-of-the-week mmies (n = 10,087). The R2R^2R2 from this regression w0.000599. Is there evinththe mevaries with the y of the week? The mol estimateis Yi=β1+β2+β3+β4+β5+ϵiY_i = \beta_11 + \beta_22 + \beta_33 + \beta_44 + \beta_55 + \epsilon_iYi​=β1​​+β2​​+β3​​+β4​​+β5​​+ϵi​, where is a mmy thtakes the value 1 if the inx of the weeky is i (e.g., Mony = 1, Tuesy = 2, c). The restriction is thH0:β1=β2=β3=β4=β5H_0:\beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5H0​:β1​=β2​=β3​=β4​=β5​ so there this is no y-of-the-week effect. This mol cequivalently written Yi=μ+δ2+δ3+δ4+δ5+ϵiY_i = \mu + \lta_22 + \lta_33 + \lta_44 + \lta_55 + \epsilon_iYi​=μ+δ2​​+δ3​​+δ4​​+δ5​​+ϵi​, therefore, here the null is H0:δ2=δ3=δ4=δ5H_0:\lta_2 = \lta_3 = \lta_4 = \lta_5H0​:δ2​=δ3​=δ4​=δ5​. In the two mols, μ=β1\mu = \beta_1μ=β1​, anμ+δi=βi\mu + \lta_i = \beta_iμ+δi​=βi​. The seconform of the mol is a more stanrnull for F-stat. The F-stof the regression is(R2−0)/4(1−R2)/(n−5)=0.000599/4(1−0.000599)/(10087−5)=1.51\frac{(R^2-0)/4}{(1-R^2)/(n-5)}=\frac{0.000599/4}{(1-0.000599)/(10087-5)}=1.51(1−R2)/(n−5)(R2−0)/4​=(1−0.000599)/(10087−5)0.000599/4​=1.51The stribution is F4,10082F_{4,10082}F4,10082​ anthe criticvalue using a 5% size is 2.37. The test statistic is less ththe criticvalue, therefore, the null thall effects are 0 is not rejecte Means 和R Square 是个什么关系?该题目的解题思路是什么? 这两者如何关联上?考了哪几个知识点?非常感谢

2023-02-05 02:23 1 · 回答

NO.PZ2020010801000025问题如下A mol westimateusing ily ta from the S P 500 from 1977 until 2017 whiinclufive y-of-the-week mmies (n = 10,087). The R2R^2R2 from this regression w0.000599. Is there evinththe mevaries with the y of the week? The mol estimateis Yi=β1+β2+β3+β4+β5+ϵiY_i = \beta_11 + \beta_22 + \beta_33 + \beta_44 + \beta_55 + \epsilon_iYi​=β1​​+β2​​+β3​​+β4​​+β5​​+ϵi​, where is a mmy thtakes the value 1 if the inx of the weeky is i (e.g., Mony = 1, Tuesy = 2, c). The restriction is thH0:β1=β2=β3=β4=β5H_0:\beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5H0​:β1​=β2​=β3​=β4​=β5​ so there this is no y-of-the-week effect. This mol cequivalently written Yi=μ+δ2+δ3+δ4+δ5+ϵiY_i = \mu + \lta_22 + \lta_33 + \lta_44 + \lta_55 + \epsilon_iYi​=μ+δ2​​+δ3​​+δ4​​+δ5​​+ϵi​, therefore, here the null is H0:δ2=δ3=δ4=δ5H_0:\lta_2 = \lta_3 = \lta_4 = \lta_5H0​:δ2​=δ3​=δ4​=δ5​. In the two mols, μ=β1\mu = \beta_1μ=β1​, anμ+δi=βi\mu + \lta_i = \beta_iμ+δi​=βi​. The seconform of the mol is a more stanrnull for F-stat. The F-stof the regression is(R2−0)/4(1−R2)/(n−5)=0.000599/4(1−0.000599)/(10087−5)=1.51\frac{(R^2-0)/4}{(1-R^2)/(n-5)}=\frac{0.000599/4}{(1-0.000599)/(10087-5)}=1.51(1−R2)/(n−5)(R2−0)/4​=(1−0.000599)/(10087−5)0.000599/4​=1.51The stribution is F4,10082F_{4,10082}F4,10082​ anthe criticvalue using a 5% size is 2.37. The test statistic is less ththe criticvalue, therefore, the null thall effects are 0 is not rejecte这种难度和类型的题考试会考吗

2022-03-21 15:55 1 · 回答