开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Joyce · 2019年09月01日

问一道题:NO.PZ2017092702000008

问题如下图:

    

选项:

A.

B.

C.

解释:


可以理解为,如果期末没有现金流,FV就为0,不用纠结现在有投入,未来就有现金流入的问题,是吗?

1 个答案

星星_品职助教 · 2019年09月01日

同学你好,

你的理解没问题,是否有FV并不是根据期初是否有现金流投入决定的,而是要看题目中是否给出FV的具体信息,如果没给,就是按照FV=0处理。

比如学生付学费的问题,就是只有投入,没有FV流出的;

  • 1

    回答
  • 1

    关注
  • 404

    浏览
相关问题

NO.PZ2017092702000008 问题如下 investment pays €300 annually for five years, with the first payment occurring toy. The present value (PV) of the investment scountea 4% annurate is closest to: A.€1,336. B.€1,389. C.€1,625. B is correct,shown in the following calculation for annuity (e:PV=A[1−1(1+r)Nr](1+r)PV=A{\lbrack\frac{1-\frac1{{(1+r)}^N}}r\rbrack}{(1+r)}PV=A[r1−(1+r)N1​​](1+r)where A = €300, r = 0.04, anN = 5.PV=300[1−1(1+0.4)50.04](1.04)PV=300{\lbrack\frac{1-\frac1{{(1+0.4)}^5}}{0.04}\rbrack}{(1.04)}PV=300[0.041−(1+0.4)51​​](1.04)PV = €1,388.97, or ≈\approx≈ €1,389. 助教给到的其他人解答的计算器算出来的是后付年金,不是答案。但题目是先付年金,所以计算器要怎么按

2023-10-26 15:28 2 · 回答

NO.PZ2017092702000008 问题如下 investment pays €300 annually for five years, with the first payment occurring toy. The present value (PV) of the investment scountea 4% annurate is closest to: A.€1,336. B.€1,389. C.€1,625. B is correct,shown in the following calculation for annuity (e:PV=A[1−1(1+r)Nr](1+r)PV=A{\lbrack\frac{1-\frac1{{(1+r)}^N}}r\rbrack}{(1+r)}PV=A[r1−(1+r)N1​​](1+r)where A = €300, r = 0.04, anN = 5.PV=300[1−1(1+0.4)50.04](1.04)PV=300{\lbrack\frac{1-\frac1{{(1+0.4)}^5}}{0.04}\rbrack}{(1.04)}PV=300[0.041−(1+0.4)51​​](1.04)PV = €1,388.97, or ≈\approx≈ €1,389. N=5, I/Y=4,FV=0,PMT=300, CPT PV=1335.5

2023-10-26 13:44 1 · 回答

NO.PZ2017092702000008 问题如下 investment pays €300 annually for five years, with the first payment occurring toy. The present value (PV) of the investment scountea 4% annurate is closest to: A.€1,336. B.€1,389. C.€1,625. B is correct,shown in the following calculation for annuity (e:PV=A[1−1(1+r)Nr](1+r)PV=A{\lbrack\frac{1-\frac1{{(1+r)}^N}}r\rbrack}{(1+r)}PV=A[r1−(1+r)N1​​](1+r)where A = €300, r = 0.04, anN = 5.PV=300[1−1(1+0.4)50.04](1.04)PV=300{\lbrack\frac{1-\frac1{{(1+0.4)}^5}}{0.04}\rbrack}{(1.04)}PV=300[0.041−(1+0.4)51​​](1.04)PV = €1,388.97, or ≈\approx≈ €1,389. 是不是求PV就设FV是0,求FV就设PV是0呀?

2023-07-19 09:46 1 · 回答

NO.PZ2017092702000008 问题如下 investment pays €300 annually for five years, with the first payment occurring toy. The present value (PV) of the investment scountea 4% annurate is closest to: A.€1,336. B.€1,389. C.€1,625. B is correct,shown in the following calculation for annuity (e:PV=A[1−1(1+r)Nr](1+r)PV=A{\lbrack\frac{1-\frac1{{(1+r)}^N}}r\rbrack}{(1+r)}PV=A[r1−(1+r)N1​​](1+r)where A = €300, r = 0.04, anN = 5.PV=300[1−1(1+0.4)50.04](1.04)PV=300{\lbrack\frac{1-\frac1{{(1+0.4)}^5}}{0.04}\rbrack}{(1.04)}PV=300[0.041−(1+0.4)51​​](1.04)PV = €1,388.97, or ≈\approx≈ €1,389. 請問r不是應該等于0.04嗎,爲何會有個(1+0.4)^5?

2022-09-23 00:27 1 · 回答

NO.PZ2017092702000008 问题如下 investment pays €300 annually for five years, with the first payment occurring toy. The present value (PV) of the investment scountea 4% annurate is closest to: A.€1,336. B.€1,389. C.€1,625. B is correct,shown in the following calculation for annuity (e:PV=A[1−1(1+r)Nr](1+r)PV=A{\lbrack\frac{1-\frac1{{(1+r)}^N}}r\rbrack}{(1+r)}PV=A[r1−(1+r)N1​​](1+r)where A = €300, r = 0.04, anN = 5.PV=300[1−1(1+0.4)50.04](1.04)PV=300{\lbrack\frac{1-\frac1{{(1+0.4)}^5}}{0.04}\rbrack}{(1.04)}PV=300[0.041−(1+0.4)51​​](1.04)PV = €1,388.97, or ≈\approx≈ €1,389. 请问为什么我用计算器BGN模式算出来是1498?求具体计算器怎么按谢谢

2022-07-12 12:46 1 · 回答