开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

一颗自然卷 · 2019年07月13日

问一道题:NO.PZ2016062402000047

问题如下图:

    

选项:

A.

B.

C.

D.

解释:

请问,得到2.5之后,从daily变为annualized怎么计算的?

1 个答案
已采纳答案

品职答疑小助手雍 · 2019年07月14日

同学你好,求出长期的daily的方差是0.25,那么标准差是0.5,然后根据平方根法则求年化的,这里假设了1年有252个交易日。所以要乘以根号下252。

这个平方根法则如果现在还没学,随着后面的学习会学到的。

一颗自然卷 · 2019年07月17日

请问哪里详细讲了平方根法则呢

品职答疑小助手雍 · 2019年07月17日

emmmm这个是讲课中间提到的,确实没有它是在哪里的印象了,基本原理是这样的:“每天的标准差是x的话,求一个月的标准差”这里假设一个月的方差是一天方差的30倍。所以月的标准差就是日标准差的根号下30倍。上面那个题的年也是一样的道理。

  • 1

    回答
  • 1

    关注
  • 512

    浏览
相关问题

NO.PZ2016062402000047问题如下A risk manager estimates ily varianhth_tht​ using a GARmol on ily return rt:ht=α0  +α1rt−12+βht−1,  with  α0=0.005,α1  =0.04,β=0.94r_t:h_t=\alpha_0\;+\alpha_1r_{t-1}^2+\beta h_{t-1},\;with\;\alpha_0=0.005,\alpha_1\;=0.04,\beta=0.94rt​:ht​=α0​+α1​rt−12​+βht−1​,withα0​=0.005,α1​=0.04,β=0.94.The long-run annualizevolatility is approximately 13.54% 7.94% 72.72% 25.00% The long-run mevarianis h=α01−α1−β=0.0051−0.04−0.94=0.25h=\frac{\alpha_0}{1-\alpha_1-\beta}=\frac{0.005}{1-0.04-0.94}=0.25h=1−α1​−βα0​​=1−0.04−0.940.005​=0.25. Taking the square root, this gives 0.5 for ily volatility. Multiplying 252\sqrt{252}252​, we have annualizevolatility of 7.937%.老师,我不理解为什么算出来的VL=025,也要开根号

2022-03-31 18:23 1 · 回答

NO.PZ2016062402000047 7.94% 72.72% 25.00% The long-run mevarianis h=α01−α1−β=0.0051−0.04−0.94=0.25h=\frac{\alpha_0}{1-\alpha_1-\beta}=\frac{0.005}{1-0.04-0.94}=0.25h=1−α1​−βα0​​=1−0.04−0.940.005​=0.25. Taking the square root, this gives 0.5 for ily volatility. Multiplying 252\sqrt{252}252 ​, we have annualizevolatility of 7.937%.求出来是ily,但是我不理解为什么✖️更号下252。为什么加更号

2022-01-23 21:35 1 · 回答

7.94% 72.72% 25.00% The long-run mevarianis h=α01−α1−β=0.0051−0.04−0.94=0.25h=\frac{\alpha_0}{1-\alpha_1-\beta}=\frac{0.005}{1-0.04-0.94}=0.25h=1−α1​−βα0​​=1−0.04−0.940.005​=0.25. Taking the square root, this gives 0.5 for ily volatility. Multiplying 252\sqrt{252}252 ​, we have annualizevolatility of 7.937%.老师可以讲下这个题目和知识点吗

2020-10-11 18:35 2 · 回答

7.94% 72.72% 25.00% The long-run mevarianis h=α01−α1−β=0.0051−0.04−0.94=0.25h=\frac{\alpha_0}{1-\alpha_1-\beta}=\frac{0.005}{1-0.04-0.94}=0.25h=1−α1​−βα0​​=1−0.04−0.940.005​=0.25. Taking the square root, this gives 0.5 for ily volatility. Multiplying 252\sqrt{252}252 ​, we have annualizevolatility of 7.937%.想问一下这里的单位问题,0.5乘以根号下252确实等于7.93,但是为什么就变成了7.93%呢?那个百分号如何得到的

2020-03-03 10:30 1 · 回答

计算时,为啥r t-1和ht-1都变为1了?

2019-11-14 14:38 2 · 回答