问题如下图:
选项:
A.
B.
C.
解释:
不懂这道题为什么前面有一个负号
NO.PZ2018123101000036 问题如下 Exhibit 1. Three-Factor Mol of Term Structure Note: Entries incate how yiel woulchange for a one stanrviation increase in a factor. Calculate the expectechange in yielon the five-yebonresulting from a one stanrviation crease in the level factor ana one stanrviation crease in the curvature factor. creasing 0.8315%. creasing 0.0389%. increasing 0.0389%. C is correct.考点Managing YielCurve Risks: compose the risk into three factors解析图1中的因子表示各个因子变动一个标准差对债券收益率的影响,因此对于5年期的债券,level变动一个标准差对债券收益率的影响为-0.4352%; curvature变动一个标准差对债券收益率的影响为0.3963%,因此Level降低一个标准差,Curvature降低一个标准差对债券收益率的影响为(−1)×(−0.4352%)+(−1)×0.3963%=0.0389%(-1)\times(-0.4352\%)+(-1)\times0.3963\%=0.0389\%(−1)×(−0.4352%)+(−1)×0.3963%=0.0389% 没太看懂这个题的正负号,题目问的价格还是收益率呀,如果是价格,那么和yiel反向关系对吗
NO.PZ2018123101000036 问题如下 Exhibit 1. Three-Factor Mol of Term Structure Note: Entries incate how yiel woulchange for a one stanrviation increase in a factor. Calculate the expectechange in yielon the five-yebonresulting from a one stanrviation crease in the level factor ana one stanrviation crease in the curvature factor. creasing 0.8315%. creasing 0.0389%. increasing 0.0389%. C is correct.考点Managing YielCurve Risks: compose the risk into three factors解析图1中的因子表示各个因子变动一个标准差对债券收益率的影响,因此对于5年期的债券,level变动一个标准差对债券收益率的影响为-0.4352%; curvature变动一个标准差对债券收益率的影响为0.3963%,因此Level降低一个标准差,Curvature降低一个标准差对债券收益率的影响为(−1)×(−0.4352%)+(−1)×0.3963%=0.0389%(-1)\times(-0.4352\%)+(-1)\times0.3963\%=0.0389\%(−1)×(−0.4352%)+(−1)×0.3963%=0.0389% 请问答案解析中公式(−1)×(−0.4352%)+(−1)×0.3963%=0.0389%,这个(-1)是什么意思?如何理解?
NO.PZ2018123101000036 问题如下 Exhibit 1. Three-Factor Mol of Term Structure Note: Entries incate how yiel woulchange for a one stanrviation increase in a factor. Calculate the expectechange in yielon the five-yebonresulting from a one stanrviation crease in the level factor ana one stanrviation crease in the curvature factor. creasing 0.8315%. creasing 0.0389%. increasing 0.0389%. C is correct.考点Managing YielCurve Risks: compose the risk into three factors解析图1中的因子表示各个因子变动一个标准差对债券收益率的影响,因此对于5年期的债券,level变动一个标准差对债券收益率的影响为-0.4352%; curvature变动一个标准差对债券收益率的影响为0.3963%,因此Level降低一个标准差,Curvature降低一个标准差对债券收益率的影响为(−1)×(−0.4352%)+(−1)×0.3963%=0.0389%(-1)\times(-0.4352\%)+(-1)\times0.3963\%=0.0389\%(−1)×(−0.4352%)+(−1)×0.3963%=0.0389% 老师,这个符号如何考虑?我想的是表格内部显示的是增加的量,那现在题目是问crease,我就-(-0.4)-0.3【具体数字忘了】,最后是正的,就是增加, 这样做对么?
NO.PZ2018123101000036 问题如下 Exhibit 1. Three-Factor Mol of Term Structure Note: Entries incate how yiel woulchange for a one stanrviation increase in a factor. Calculate the expectechange in yielon the five-yebonresulting from a one stanrviation crease in the level factor ana one stanrviation crease in the curvature factor. creasing 0.8315%. creasing 0.0389%. increasing 0.0389%. C is correct.考点Managing YielCurve Risks: compose the risk into three factors解析图1中的因子表示各个因子变动一个标准差对债券收益率的影响,因此对于5年期的债券,level变动一个标准差对债券收益率的影响为-0.4352%; curvature变动一个标准差对债券收益率的影响为0.3963%,因此Level降低一个标准差,Curvature降低一个标准差对债券收益率的影响为(−1)×(−0.4352%)+(−1)×0.3963%=0.0389%(-1)\times(-0.4352\%)+(-1)\times0.3963\%=0.0389\%(−1)×(−0.4352%)+(−1)×0.3963%=0.0389% 例题中,如果factor考虑的是curvature,我们求△P/P的话,只有1年和10年两个bon影响,所以用△P/P=-(△y1**w1+△y10*0*w10)=-(1%*1*0.333+1%*10*0.333)=-3.667%,也就是curvature每变动1个单位,影响价格-3.667%。但题中求的是5年bon△y变化,且假设只有level和curvature有影响,就竖着看5年的数字,找到-0.4352%和0.3963%,因为增加1个标准差,level下降,-0.4352%,curvature增加0.3963%,要求level下降1个标准差和curvature下降1一个标准差,就是-(-0.4352%)-0.3963%=0.0383%,就是提高0.0383%,因为没问对portfolio的影响,所以不用乘以权重w1,也没问价格变动,所以不用乘以ration。
NO.PZ2018123101000036 问题如下 Exhibit 1. Three-Factor Mol of Term Structure Note: Entries incate how yiel woulchange for a one stanrviation increase in a factor. Calculate the expectechange in yielon the five-yebonresulting from a one stanrviation crease in the level factor ana one stanrviation crease in the curvature factor. creasing 0.8315%. creasing 0.0389%. increasing 0.0389%. C is correct.考点Managing YielCurve Risks: compose the risk into three factors解析图1中的因子表示各个因子变动一个标准差对债券收益率的影响,因此对于5年期的债券,level变动一个标准差对债券收益率的影响为-0.4352%; curvature变动一个标准差对债券收益率的影响为0.3963%,因此Level降低一个标准差,Curvature降低一个标准差对债券收益率的影响为(−1)×(−0.4352%)+(−1)×0.3963%=0.0389%(-1)\times(-0.4352\%)+(-1)\times0.3963\%=0.0389\%(−1)×(−0.4352%)+(−1)×0.3963%=0.0389% 三因素的公式中,每一项前面都是负号(老师上课讲的意思是收益率增长1单位,其实价格会下降,所以是负号),但在实际做题中,还是得看具体变化的方向,不能直接套公式吧?