开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

lsjlsjlsj · 2019年03月10日

问一道题:NO.PZ2016082402000001

问题如下图:

    

用连续复利的公式,e(x*1/12)=1000/987

x= 15.8%? 请问这个思路错在哪里。

选项:

A.

B.

C.

D.

解释:



1 个答案

品职答疑小助手雍 · 2019年03月11日

同学你好,连续复利其实相当于把投资期细分为无数个收益区间复利滚动的收益,而这题既然说了收益区间是1个月,直接求一个月的收益率然后要变年化的话直接12次方就好了

lsjlsjlsj · 2019年03月13日

请问什么时候使用单利 什么时候使用复利息呢

品职答疑小助手雍 · 2019年03月14日

一般这种算收益率的如果题里不说用连续复利就不用复利,直接XX次方就好,用复利很多情况是折现的时候。

  • 1

    回答
  • 0

    关注
  • 452

    浏览
相关问题

NO.PZ2016082402000001 问题如下 investor buys a Treasury bill maturing in one month for $987. On the maturity te the investor collects $1,000. Calculate effective annurate (EAR). A.17.0% B.15.8% C.13.0% 11.6% ANSWER: AThe Eis finebyFVPV=(1+EAR)T\frac{FV}{PV}={(1+EAR)}^TPVFV​=(1+EAR)T . So (FVPV)1T−1{(\frac{FV}{PV})}^\frac1T-1(PVFV​)T1​−1 E= . Here, T = 1/12. So, E=   (1,000987)12−1=17.0%\;{(\frac{1,000}{987})}^{12}-1=17.0\%(9871,000​)12−1=17.0% EAR和BEY在讲义的哪个地方,找不到了

2024-09-18 20:59 1 · 回答

NO.PZ2016082402000001问题如下investor buys a Treasury bill maturing in one month for $987. On the maturity te the investor collects $1,000. Calculate effective annurate (EAR).A.17.0%B.15.8%C.13.0%11.6%ANSWER: AThe Eis finebyFVPV=(1+EAR)T\frac{FV}{PV}={(1+EAR)}^TPVFV​=(1+EAR)T . So (FVPV)1T−1{(\frac{FV}{PV})}^\frac1T-1(PVFV​)T1​−1 E= . Here, T = 1/12. So, E=   (1,000987)12−1=17.0%\;{(\frac{1,000}{987})}^{12}-1=17.0\%(9871,000​)12−1=17.0%为什么不是(1+R/12)=1000/987

2023-02-24 23:11 1 · 回答

NO.PZ2016082402000001问题如下investor buys a Treasury bill maturing in one month for $987. On the maturity te the investor collects $1,000. Calculate effective annurate (EAR).A.17.0%B.15.8%C.13.0%11.6%ANSWER: AThe Eis finebyFVPV=(1+EAR)T\frac{FV}{PV}={(1+EAR)}^TPVFV​=(1+EAR)T . So (FVPV)1T−1{(\frac{FV}{PV})}^\frac1T-1(PVFV​)T1​−1 E= . Here, T = 1/12. So, E=   (1,000987)12−1=17.0%\;{(\frac{1,000}{987})}^{12}-1=17.0\%(9871,000​)12−1=17.0%您好,我是想ERA是年化利率,所以按照学习的内容,这么列的公式。是哪里理解的有偏差?

2022-05-19 23:06 1 · 回答

NO.PZ2016082402000001问题如下investor buys a Treasury bill maturing in one month for $987. On the maturity te the investor collects $1,000. Calculate effective annurate (EAR).A.17.0%B.15.8%C.13.0%11.6%ANSWER: AThe Eis finebyFVPV=(1+EAR)T\frac{FV}{PV}={(1+EAR)}^TPVFV​=(1+EAR)T . So (FVPV)1T−1{(\frac{FV}{PV})}^\frac1T-1(PVFV​)T1​−1 E= . Here, T = 1/12. So, E=   (1,000987)12−1=17.0%\;{(\frac{1,000}{987})}^{12}-1=17.0\%(9871,000​)12−1=17.0%一个月到期,不是说明一个月结一次么,一年就得是12次?

2022-05-19 22:20 1 · 回答

NO.PZ2016082402000001问题如下investor buys a Treasury bill maturing in one month for $987. On the maturity te the investor collects $1,000. Calculate effective annurate (EAR).A.17.0%B.15.8%C.13.0%11.6%ANSWER: AThe Eis finebyFVPV=(1+EAR)T\frac{FV}{PV}={(1+EAR)}^TPVFV​=(1+EAR)T . So (FVPV)1T−1{(\frac{FV}{PV})}^\frac1T-1(PVFV​)T1​−1 E= . Here, T = 1/12. So, E=   (1,000987)12−1=17.0%\;{(\frac{1,000}{987})}^{12}-1=17.0\%(9871,000​)12−1=17.0%老师请问一下,为什么这里不是1+12分之r,然后滚一次方来算呢

2022-05-04 03:50 1 · 回答