开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

未命名 · 2018年11月10日

问一道题:NO.PZ2016031001000076 [ CFA I ]

问题如下图:

    

选项:

A.

B.

C.

解释:


你好,这道题目没有看懂,看了答案,其实这道题目的意思就是指把APR2已知,然后求APR12,是么,谢谢

1 个答案

V哥_品职助教 · 2018年11月11日

你理解的是对的。

付息频率为半年的YTM(APR2)是3.897%,问付息频率转换为月时的YTM(APR12)。

计算方法如解答所示,建议记忆一下。

  • 1

    回答
  • 0

    关注
  • 497

    浏览
相关问题

NO.PZ2016031001000076 问题如下 A 5-year, 5% semiannucoupon payment corporate bonis price104.967 per 100 of pvalue. The bons yielto-maturity, quoteon a semiannubonbasis, is 3.897%. analyst hbeen asketo convert to a monthly periocity. Unr this conversion, the yielto-maturity is closest to: A.3.87%. B.4.95%. C.7.67%. A is correct.The yielto-maturity, statefor a periocity of 12 (monthly periocity), is 3.87%.The formula to convert annupercentage rate (annuyielto-maturity) from one periocity to another is follows:(1+APRmm)m=(1+APRnn)n{(1+\frac{APRm}m)}^m={(1+\frac{APRn}n)}^n(1+mAPRm​)m=(1+nAPRn​)n(1+0.038972)2=(1+APR1212)12{(1+\frac{0.03897}2)}^2={(1+\frac{APR12}{12})}^{12}(1+20.03897​)2=(1+12APR12​)12(1.01949)2=(1+APR1212)12{(1.01949)}^2={(1+\frac{APR12}{12})}^{12}(1.01949)2=(1+12APR12​)121.03935=(1+APR1212)121.03935={(1+\frac{APR12}{12})}^{12}1.03935=(1+12APR12​)12(1.03935)1/12=[(1+APR1212)12]1/12{(1.03935)}^{1/12}={\lbrack{(1+\frac{APR12}{12})}^{12}\rbrack}^{1/12}(1.03935)1/12=[(1+12APR12​)12]1/121.00322=(1+APR1212)1.00322={(1+\frac{APR12}{12})}1.00322=(1+12APR12​)1.00322−1=(APR1212)1.00322-1={(\frac{APR12}{12})}1.00322−1=(12APR12​)APR12 = 0.00322 × 12 = 0.03865, or approximately 3.87%.考点APR的转换解析这里考查的是不同计息频率的收益率之间的转换。一年计息两次的年化收益率,即APR2 ,转换到一年计息12次的APR12 ,可以同时转换到一年计息一次(相当于一个过渡)。即(1+APR2 /2)2 =1+EAR=(1+APR12 /12)12 ,得到APR12 为3.87%。 请问APR是在哪里学过呢,怎么这一章我没有看到这个知识点呢?谢谢!

2023-04-27 05:08 1 · 回答

NO.PZ2016031001000076问题如下A 5-year, 5% semiannucoupon payment corporate bonis price104.967 per 100 of pvalue. The bons yielto-maturity, quoteon a semiannubonbasis, is 3.897%. analyst hbeen asketo convert to a monthly periocity. Unr this conversion, the yielto-maturity is closest to: A.3.87%.B.4.95%.C.7.67%. A is correct.The yielto-maturity, statefor a periocity of 12 (monthly periocity), is 3.87%.The formula to convert annupercentage rate (annuyielto-maturity) from one periocity to another is follows:(1+APRmm)m=(1+APRnn)n{(1+\frac{APRm}m)}^m={(1+\frac{APRn}n)}^n(1+mAPRm​)m=(1+nAPRn​)n(1+0.038972)2=(1+APR1212)12{(1+\frac{0.03897}2)}^2={(1+\frac{APR12}{12})}^{12}(1+20.03897​)2=(1+12APR12​)12(1.01949)2=(1+APR1212)12{(1.01949)}^2={(1+\frac{APR12}{12})}^{12}(1.01949)2=(1+12APR12​)121.03935=(1+APR1212)121.03935={(1+\frac{APR12}{12})}^{12}1.03935=(1+12APR12​)12(1.03935)1/12=[(1+APR1212)12]1/12{(1.03935)}^{1/12}={\lbrack{(1+\frac{APR12}{12})}^{12}\rbrack}^{1/12}(1.03935)1/12=[(1+12APR12​)12]1/121.00322=(1+APR1212)1.00322={(1+\frac{APR12}{12})}1.00322=(1+12APR12​)1.00322−1=(APR1212)1.00322-1={(\frac{APR12}{12})}1.00322−1=(12APR12​)APR12 = 0.00322 × 12 = 0.03865, or approximately 3.87%.考点APR的转换解析这里考查的是不同计息频率的收益率之间的转换。一年计息两次的年化收益率,即APR2 ,转换到一年计息12次的APR12 ,可以同时转换到一年计息一次(相当于一个过渡)。即(1+APR2 /2)2 =1+EAR=(1+APR12 /12)12 ,得到APR12 为3.87%。 这里求出或者看出一年计息两次的变化收益率是3.897%之后怎么按计算器求出最终答案?题目是要求按出计息12次的年化收益率吗?

2022-10-13 22:55 1 · 回答

NO.PZ2016031001000076问题如下A 5-year, 5% semiannucoupon payment corporate bonis price104.967 per 100 of pvalue. The bons yielto-maturity, quoteon a semiannubonbasis, is 3.897%. analyst hbeen asketo convert to a monthly periocity. Unr this conversion, the yielto-maturity is closest to: A.3.87%.B.4.95%.C.7.67%. A is correct.The yielto-maturity, statefor a periocity of 12 (monthly periocity), is 3.87%.The formula to convert annupercentage rate (annuyielto-maturity) from one periocity to another is follows:(1+APRmm)m=(1+APRnn)n{(1+\frac{APRm}m)}^m={(1+\frac{APRn}n)}^n(1+mAPRm​)m=(1+nAPRn​)n(1+0.038972)2=(1+APR1212)12{(1+\frac{0.03897}2)}^2={(1+\frac{APR12}{12})}^{12}(1+20.03897​)2=(1+12APR12​)12(1.01949)2=(1+APR1212)12{(1.01949)}^2={(1+\frac{APR12}{12})}^{12}(1.01949)2=(1+12APR12​)121.03935=(1+APR1212)121.03935={(1+\frac{APR12}{12})}^{12}1.03935=(1+12APR12​)12(1.03935)1/12=[(1+APR1212)12]1/12{(1.03935)}^{1/12}={\lbrack{(1+\frac{APR12}{12})}^{12}\rbrack}^{1/12}(1.03935)1/12=[(1+12APR12​)12]1/121.00322=(1+APR1212)1.00322={(1+\frac{APR12}{12})}1.00322=(1+12APR12​)1.00322−1=(APR1212)1.00322-1={(\frac{APR12}{12})}1.00322−1=(12APR12​)APR12 = 0.00322 × 12 = 0.03865, or approximately 3.87%.考点APR的转换解析这里考查的是不同计息频率的收益率之间的转换。一年计息两次的年化收益率,即APR2 ,转换到一年计息12次的APR12 ,可以同时转换到一年计息一次(相当于一个过渡)。即(1+APR2 /2)2 =1+EAR=(1+APR12 /12)12 ,得到APR12 为3.87%。 请问计算器如何按开12次方?

2022-07-28 08:19 1 · 回答

NO.PZ2016031001000076问题如下A 5-year, 5% semiannucoupon payment corporate bonis price104.967 per 100 of pvalue. The bons yielto-maturity, quoteon a semiannubonbasis, is 3.897%. analyst hbeen asketo convert to a monthly periocity. Unr this conversion, the yielto-maturity is closest to: A.3.87%.B.4.95%.C.7.67%. A is correct.The yielto-maturity, statefor a periocity of 12 (monthly periocity), is 3.87%.The formula to convert annupercentage rate (annuyielto-maturity) from one periocity to another is follows:(1+APRmm)m=(1+APRnn)n{(1+\frac{APRm}m)}^m={(1+\frac{APRn}n)}^n(1+mAPRm​)m=(1+nAPRn​)n(1+0.038972)2=(1+APR1212)12{(1+\frac{0.03897}2)}^2={(1+\frac{APR12}{12})}^{12}(1+20.03897​)2=(1+12APR12​)12(1.01949)2=(1+APR1212)12{(1.01949)}^2={(1+\frac{APR12}{12})}^{12}(1.01949)2=(1+12APR12​)121.03935=(1+APR1212)121.03935={(1+\frac{APR12}{12})}^{12}1.03935=(1+12APR12​)12(1.03935)1/12=[(1+APR1212)12]1/12{(1.03935)}^{1/12}={\lbrack{(1+\frac{APR12}{12})}^{12}\rbrack}^{1/12}(1.03935)1/12=[(1+12APR12​)12]1/121.00322=(1+APR1212)1.00322={(1+\frac{APR12}{12})}1.00322=(1+12APR12​)1.00322−1=(APR1212)1.00322-1={(\frac{APR12}{12})}1.00322−1=(12APR12​)APR12 = 0.00322 × 12 = 0.03865, or approximately 3.87%.考点APR的转换解析这里考查的是不同计息频率的收益率之间的转换。一年计息两次的年化收益率,即APR2 ,转换到一年计息12次的APR12 ,可以同时转换到一年计息一次(相当于一个过渡)。即(1+APR2 /2)2 =1+EAR=(1+APR12 /12)12 ,得到APR12 为3.87%。 请问下老师为什么PMT是2.5?

2022-06-24 01:19 1 · 回答

我用计算器这么按的 N=5*12=60 PV= -104.967  PMT= 100*5%/12=0.4167 FV=100 算出来 IY=0.3254这个应该是月化,我再乘以 12 得到对应的年化是 3.9,为什么这样是不对的呢?

2020-11-06 22:33 1 · 回答