开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

张大龙 · 2025年07月07日

12.5*2等于的是个什么?

NO.PZ2024030508000066

问题如下:

An analyst at a hedge fund is constructing a 95% confidence interval for the 2-month point forecast of the price of a standard option contract on 100 shares of a stock, measured in EUR, using the linear time trend model utilized by the fund. The analyst refers to the model estimated using monthly option prices (OP) over the last 5 years, which is denoted by the following equation:

𝑂𝑃𝑇 + = 318.6 + 12.5(𝑇 + ) + 𝜀𝑇 +

where T (current month) is equal to 0, h is the horizon of the forecast, and 𝜀𝑇 + is Gaussian white noise. The estimate of the residual standard deviation, σ, is 4.62. What is the correct 95% confidence interval for the price of the option contract?

选项:

A.[EUR 322.04, EUR 340.15] B.[EUR 334.54, EUR 352.65] C.

[EUR 336.02, EUR 351.18]

D.[EUR 338.98, EUR 348.22]

解释:

Explanation: B is correct. The forecast confidence interval depends on the variance of the forecast error. When the error is Gaussian white noise N(0, σ2), then the constructed confidence interval for the future value follows a normal distribution. The 95% confidence interval for the forecast of the option contract price is given by:

𝐸𝑇 [𝑂𝑃𝑇 + ] ± 1.96𝜎

Note that the time T expectation or forecast of OPT + h is given by:

𝐸𝑇 [𝑂𝑃𝑇 + ] = 318.6 + 12,5(𝑇 + )

Therefore,

𝐸0 [𝑂𝑃0 + 2] = 318.6 + 12.5(0 + 2)

𝐸[𝑂𝑃2] = 318.6 + 12.5(2)

𝐸[𝑂𝑃2] = 343.6

The 95% confidence interval for the forecast is then constructed as:

𝐸[𝑂𝑃2] ± 1.96𝜎 = 343.6 ± 1.96 (4.62) = [334.54 , 352.65].

A is incorrect. This is just 𝐸[𝑂𝑃1 ] ± 1.96𝜎.

C is incorrect. This is the 90% confidence interval, 𝐸[𝑂𝑃2] ± 1.64𝜎.

D is incorrect. This is just 𝐸[𝑂𝑃2] ± 𝜎.

Learning Objective: Calculate the estimated trend value and form an interval forecast for a time series.

Reference: Global Association of Risk Professionals. Quantitative Analysis. New York, NY: Pearson, 2023, Chapter 11, Non-Stationary Time Series [QA-11].

老师您好,12.5*(0+2),为什么这么算?

1 个答案

李坏_品职助教 · 2025年07月08日

嗨,从没放弃的小努力你好:


答案里面写的𝐸0 [𝑂𝑃0 + 2]  意思是,距离现在2个月之后的点估计值( 2-month point forecast)


现在是T =0的时刻,距离现在2个月,那就是 h =2的时候。 题目给的方程是318.6 + 12.5(𝑇 + ℎ) +残差,由于残差的数学期望是0,所以不用考虑他,T+h = 2, 所以𝐸[𝑂𝑃2] = 318.6 + 12.5 * (0 + 2)

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

  • 1

    回答
  • 0

    关注
  • 5

    浏览
相关问题

NO.PZ2024030508000066问题如下 analyst a hee funis constructinga 95% confinintervfor the 2-month point forecast of the priof astanroption contraon 100 shares of a stock, measurein EUR, using thelinetime trenmol utilizethe fun The analyst refers to the molestimateusing monthly option prices (OP) over the last 5 years, whiisnotethe following equation:𝑂𝑃𝑇 + ℎ = 318.6 + 12.5(𝑇 + ℎ) + 𝜀𝑇 + ℎwhere T (current month) isequto 0, h is the horizon of the forecast, an𝜀𝑇 + ℎ is Gaussianwhite noise. The estimate of the resistanrviation, σ, is4.62. Whis the corre95% confinintervfor the priof the optioncontract? A.[EUR 322.04, EUR 340.15]B.[EUR 334.54, EUR 352.65]C.[EUR 336.02, EUR 351.18][EUR 338.98, EUR 348.22] Explanation: Bis correct. The forecast confinintervpen on the varianof theforecast error. When the error is Gaussiwhite noise N(0, σ2),then the constructeconfinintervfor the future value follows a normalstribution. The 95% confinintervfor the forecast of the optioncontrapriis given by:𝐸𝑇 [𝑂𝑃𝑇 + ℎ] ± 1.96𝜎Note ththe time T expectation orforecast of OPT + h is given by:𝐸𝑇 [𝑂𝑃𝑇 + ℎ] = 318.6 +12,5(𝑇 + ℎ)Therefore,𝐸0 [𝑂𝑃0 + 2] = 318.6 + 12.5(0 + 2)𝐸[𝑂𝑃2] = 318.6 + 12.5(2)𝐸[𝑂𝑃2] = 343.6The 95% confinintervfor theforecast is then constructeas:𝐸[𝑂𝑃2] ± 1.96𝜎 = 343.6 ± 1.96 ∗ (4.62) = [334.54 ,352.65].A is incorrect. This is just 𝐸[𝑂𝑃1] ± 1.96𝜎.C is incorrect. This is the 90% confinceinterval, 𝐸[𝑂𝑃2] ± 1.64𝜎.is incorrect. This is just 𝐸[𝑂𝑃2] ± 𝜎.Learning Objective: Calculate the estimatetrenvalue anform intervalforecast for a time series.Reference: GlobalAssociation of Risk Professionals. Quantitative Analysis. New York, NY:Pearson, 2023, Chapter 11, Non-Stationary Time Series [QA-11]. 11111111111111111111111111111

2024-05-08 19:39 2 · 回答