开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Anne · 2025年05月28日

课后题、原版书和讲义中用的方法都不太一样,具体应该用哪一种?

* 问题详情,请 查看题干

NO.PZ202112010200002202

问题如下:

What is the approximate VaR for the bond position at a 99% confidence interval (equal to 2.33 standard deviations) for one month (with 21 trading days) if daily yield volatility is 1.50 bps and returns are normally distributed?

选项:

A.

$1,234,105

B.

$2,468,210

C.

$5,413,133

解释:

A is correct. The expected change in yield based on a 99% confidence interval for the bond and a 0.015% yield volatility over 21 trading days equals 16 bps = (0.015% × 2.33 standard deviations × √21).

We can quantify the bond’s market value change by multiplying the familiar (–ModDur × ∆Yield) expression by bond price to get $1,234,105 = ($75 million × 1.040175 (–9.887 × .0016)).

书上是给的%的形式,乘以了YTM;课后题是两种形式都给了,但用的是bps(同时也疑惑,1.75%不等于1.75bps);课后题,即本题给的是bps,没有乘YTM。有点晕了,到底该怎么做呢?谢谢老师~





1 个答案

发亮_品职助教 · 2025年05月28日

原版书例题和课后题是2个题型。都要理解。

何老师额外补充了一个解法,这个是教材之前的一个算法,因为这道题改了好几次,多少都有点问题,以防后续协会再改,所以何老师也补充了一个情况的算法。

从目前的题目看,建议掌握何老师讲的原版书例题,先忽略补充的解法(用volatility乘以YTM的算法目前可以了解),但主要还是掌握下面我说的两个算法。


原版书课后题的解法是:

已知每日的volatility=1.5bps,让求一个月的VaR

我们要找到月度的volatility,假设一个月21个交易日,则为月度volatility=根号21×1.5bps

则按照月度数据,利率的最大涨幅是:2.33×根号21×1.5bps

债券价格的最大跌幅是:-duration×2.33×根号21×1.5bps

再乘以MV算最大下跌金额,即VaR:-MV×duration×2.33×根号21×1.5bps


原版书例题差不多的算法,但是涉及volatility的转换。这里给volatility为一个年化数据。

已知年化数据volatility是1.75%。要计算月度VaR,所以要先找到月度volatility,为:

1.75%/根号12,要缩小volatility期限,所以除以根号12


然后月度数据最大的利率上升幅度是:2.33×1.75% / 根号21

最大的债券价格下跌幅度是:-duration×2.33×1.75% / 根号21

最大的价格下跌金额是:- MV × duration × 2.33 × 1.75% / 根号21

  • 1

    回答
  • 0

    关注
  • 6

    浏览
相关问题

NO.PZ202112010200002202问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 1.50 bps anreturns are normally stribute A.$1,234,105B.$2,468,210C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 考试不同的confininterval(比如 90% 99%)对应等于多少 stanrviations会给吗 比如像这道题目就给出了99%对应2.33S还是需要自己每个对应多少都要记住

2025-02-03 09:01 1 · 回答

NO.PZ202112010200002202问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 1.50 bps anreturns are normally stribute A.$1,234,105B.$2,468,210C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 这题要考虑16天交易日么,还是用根号12计算年度volatility

2025-01-12 16:47 1 · 回答

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 1.50 bps anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 如题。类似计算VaR这种连续乘法的计算,我可以直接在计算器一口气直接按完,而不需要分几步,这样就缺失了四舍五入的步骤,导致计算结果和分步四舍五入的正确答案有较大差异。那我应该怎么做呢?正式考试如果遇到主观题,这样算对吗?谢谢!

2025-01-11 18:14 1 · 回答

NO.PZ202112010200002202 问题如下 Whis the approximate Vfor the bonposition a 99% confininterv(equto 2.33 stanrviations) for one month (with 21 trang ys) if ily yielvolatility is 0.015% anreturns are normally stribute A.$1,234,105 B.$2,468,210 C.$5,413,133 A is correct. The expectechange in yielbaseon a 99% confinintervfor the bonana 0.015% yielvolatility over 21 trang ys equals 16 bps = (0.015% × 2.33 stanrviations × √21). We cquantify the bons market value change multiplying the famili(–Mour × ∆Yiel expression bonprito get $1,234,105 = ($75 million × 1.040175 ⨯ (–9.887 × .0016)). 我记得学二级的时候我们计算99%的VaR用的是 μ - 2.33 σ, 本题计算中只用了2.33σ 去算,μ默认取0,这是什么原因?另外YTM这里为什么不用在计算中呢?谢谢老师~

2024-07-21 12:32 1 · 回答