开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

蜗牛也是牛Megan · 2025年05月03日

讲解

NO.PZ2025040202000019

问题如下:

Question An analyst gathers the following Black–Scholes–Merton option valuation model outputs for a call option on a non-dividend-paying stock:

The probability that the call option expires in the money is:

选项:

A.A.40.6%. B.B.48.8%. C.C.59.4%.

解释:

A Incorrect because N(d2), or 40.6%, is the probability that the put option expires in the money, not the call option.

B Incorrect because N(d2) is the probability that the call option expires in the money, not d1. N(x) denotes the standard normal cumulative distribution function, which is the probability of obtaining a value of less than x based on a standard normal distribution. Also, x will have the value of d1 or d2. N(x) reflects the likelihood of observing values less than x from a random sample of observations taken from the standard normal distribution.

C Correct because the N(d2) term (being 59.4%) has an additional important interpretation. It is a unique measure of the probability that the call option expires in the money, and correspondingly, 1 – N(d2) = N(d2) is the probability that the put option expires in the money. Specifically, the probability based on the RN probability of being in the money, not one’s own estimate of the probability of being in the money nor the market’s estimate. That is, N(d2) = Prob(ST > X) based on the unique RN probability.

这道题是什么意思?这个知识点老师好像没有讲过

1 个答案

李坏_品职助教 · 2025年05月03日

嗨,从没放弃的小努力你好:


这个考查的是 Black–Scholes–Merton(其实就是BSM期权定价模型)的N(d2)的含义。


题目给出很多参数,问你期权这个期权最终是实值期权的概率是多少?


BSM模型里面,N(d2)是标准状态分布累计概率函数,表示的是在风险中性世界里,看涨期权最终变成实值的概率。

这个书上也没有给出证明过程,只是给了一句话概括:



----------------------------------------------
努力的时光都是限量版,加油!

  • 1

    回答
  • 0

    关注
  • 3

    浏览
相关问题