开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

章鱼小圆子 · 2024年11月26日

这不需要再看表格中的DW结果来判断了,而是只用T统计量判断吗 感觉有点混乱

* 问题详情,请 查看题干

NO.PZ201709270100000502

问题如下:

2. Based on the regression output in Exhibit 1, the first-differenced series used to run Regression 2 is consistent with:

选项:

A.

a random walk.

B.

covariance stationarity.

C.

a random walk with drift.

解释:

B is correct. The critical t-statistic at a 5% confidence level is 1.98. As a result, neither the intercept nor the coefficient on the first lag of the first-differenced exchange rate in Regression 2 differs significantly from zero. Also, the residual autocorrelations do not differ significantly from zero. As a result, Regression 2 can be reduced to yt = εt with a mean-reverting level of b0/(1 b1) = 0/1 = 0.

Therefore, the variance of yt in each period is Var(εt) = σ2. The fact that the residuals are not autocorrelated is consistent with the covariance of the times series, with itself being constant and finite at different lags. Because the variance and the mean of yt are constant and finite in each period, we can also conclude that yt is covariance stationary.

如题

这不需要再看表格中的DW结果来判断了,而是只用T统计量判断吗 感觉有点混乱

1 个答案

品职助教_七七 · 2024年11月26日

嗨,爱思考的PZer你好:


DW只能判断多元回归中的serial correlation情况。这道题是AR模型,所以无论最后考察的是什么,DW都可以直接就不用看了。

----------------------------------------------
努力的时光都是限量版,加油!

  • 1

    回答
  • 0

    关注
  • 5

    浏览
相关问题

NO.PZ201709270100000502 问题如下 2. Baseon the regression output in Exhibit 1, the first-fferenceseries useto run Regression 2 is consistent with: A.a ranm walk. B.covarianstationarity. C.a ranm walk with ift. B is correct. The critict-statistic a 5% confinlevel is 1.98. a result, neither the intercept nor the coefficient on the first lof the first-fferenceexchange rate in Regression 2 ffers significantly from zero. Also, the resiautocorrelations not ffer significantly from zero. a result, Regression 2 creceto yt = εt with a mean-reverting level of b0/(1 – b1) = 0/1 = 0.Therefore, the varianof yt in eaperiois Var(εt) = σ2. The faththe resials are not autocorrelateis consistent with the covarianof the times series, with itself being constant anfinite fferent lags. Because the variananthe meof yt are constant anfinite in eaperio we calso conclu thyt is covarianstationary. 为什么不是ranm walk with a aft ,题目中t统计值为0.4504 ,接受H0:G=0,存在单位根,请助教讲解答疑

2024-09-03 16:29 1 · 回答

NO.PZ201709270100000502 问题如下 2. Baseon the regression output in Exhibit 1, the first-fferenceseries useto run Regression 2 is consistent with: A.a ranm walk. B.covarianstationarity. C.a ranm walk with ift. B is correct. The critict-statistic a 5% confinlevel is 1.98. a result, neither the intercept nor the coefficient on the first lof the first-fferenceexchange rate in Regression 2 ffers significantly from zero. Also, the resiautocorrelations not ffer significantly from zero. a result, Regression 2 creceto yt = εt with a mean-reverting level of b0/(1 – b1) = 0/1 = 0.Therefore, the varianof yt in eaperiois Var(εt) = σ2. The faththe resials are not autocorrelateis consistent with the covarianof the times series, with itself being constant anfinite fferent lags. Because the variananthe meof yt are constant anfinite in eaperio we calso conclu thyt is covarianstationary. 具体的视频讲解在哪里可以找到

2024-08-25 11:28 1 · 回答

NO.PZ201709270100000502 问题如下 2. Baseon the regression output in Exhibit 1, the first-fferenceseries useto run Regression 2 is consistent with: A.a ranm walk. B.covarianstationarity. C.a ranm walk with ift. B is correct. The critict-statistic a 5% confinlevel is 1.98. a result, neither the intercept nor the coefficient on the first lof the first-fferenceexchange rate in Regression 2 ffers significantly from zero. Also, the resiautocorrelations not ffer significantly from zero. a result, Regression 2 creceto yt = εt with a mean-reverting level of b0/(1 – b1) = 0/1 = 0.Therefore, the varianof yt in eaperiois Var(εt) = σ2. The faththe resials are not autocorrelateis consistent with the covarianof the times series, with itself being constant anfinite fferent lags. Because the variananthe meof yt are constant anfinite in eaperio we calso conclu thyt is covarianstationary. yt = εt 为什么不是随机游走

2024-08-09 22:28 1 · 回答

NO.PZ201709270100000502 问题如下 2. Baseon the regression output in Exhibit 1, the first-fferenceseries useto run Regression 2 is consistent with: A.a ranm walk. B.covarianstationarity. C.a ranm walk with ift. B is correct. The critict-statistic a 5% confinlevel is 1.98. a result, neither the intercept nor the coefficient on the first lof the first-fferenceexchange rate in Regression 2 ffers significantly from zero. Also, the resiautocorrelations not ffer significantly from zero. a result, Regression 2 creceto yt = εt with a mean-reverting level of b0/(1 – b1) = 0/1 = 0.Therefore, the varianof yt in eaperiois Var(εt) = σ2. The faththe resials are not autocorrelateis consistent with the covarianof the times series, with itself being constant anfinite fferent lags. Because the variananthe meof yt are constant anfinite in eaperio we calso conclu thyt is covarianstationary. 老师,还是不太明白,题目中“Conclusion 1: The varianof xt increases over time.”,不是说明Xt方差不稳定吗,为什么会选B呢?

2023-07-28 17:18 1 · 回答