开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

莫等闲 · 2018年10月11日

问一道题:NO.PZ2017092702000014 [ CFA I ]

这个题目的意思不清楚,怎么理解啊?

问题如下图:

选项:

A.

B.

C.

解释:

2 个答案

莫等闲 · 2018年10月12日

但是有一个lump sum啊?不应该是一次性缴纳全部费用的意思吗?

菲菲_品职助教 · 2018年10月12日

他是说这笔钱是在18年一次性交,但是不是说一次性交的是50000*4,而是应该算出一个现值当成交的总数,因为你在19年交的50000在18年就不等于50000,而是小于50000。你若按50000*4来交不就是多付了很多钱嘛。

菲菲_品职助教 · 2018年10月11日

同学你好,题目的意思相当于在T=18的时候开始交50,000这一笔钱,要交四年,所以要先对这四笔钱折现。具体如下图所示:

由图可知,这里的第一笔50,000发生在18年末19年初,“in 18 years”可以看出来,即在T=18时交第一笔钱,折现之后算出的PV其实是T=17时的PV。N=4; I/Y=6; FV=0; PMT=50,000; CPT PV=173255.28

因为题目要求的是今天应该存多少钱,然后再进行下一步折现,STEP 2: N=17; PMT=0; I/Y=6; FV=173255.28; CPT PV=64340.85,即本题的答案。

  • 2

    回答
  • 0

    关注
  • 362

    浏览
相关问题

NO.PZ2017092702000014 问题如下 Granarents are funng a newborn’s future university tuition costs, estimate$50,000/yefor four years, with the first payment e a lump sum in 18 years. Assuming a 6% effective annurate, the requireposit toy is closest to: A.$60,699. B.$64,341. C.$68,201. B is correct. First, finthe present value (PV) of ornary annuity in Ye17 threpresents the tuition costs: 50,000[1−1(1+0.06)40.06]50,000{\lbrack\frac{1-\frac1{{(1+0.06)}^4}}{0.06}\rbrack}50,000[0.061−(1+0.06)41​​] = $50,000 × 3.4651 = $173,255.28. Then, finthe PV of the annuity in toy’s llars (where FV is future value):PV0=FV(1+0.06)17=173,255.28(1+0.06)17PV_0=\frac{FV}{{(1+0.06)}^{17}}=\frac{173,255.28}{{(1+0.06)}^{17}}PV0​=(1+0.06)17FV​=(1+0.06)17173,255.28​PV0 = $64,340.85 ≈ $64,341. 173255.28我能算出来 但为什么下一步时间是17 不是18

2023-09-23 20:31 1 · 回答

NO.PZ2017092702000014 问题如下 Granarents are funng a newborn’s future university tuition costs, estimate$50,000/yefor four years, with the first payment e a lump sum in 18 years. Assuming a 6% effective annurate, the requireposit toy is closest to: A.$60,699. B.$64,341. C.$68,201. B is correct. First, finthe present value (PV) of ornary annuity in Ye17 threpresents the tuition costs: 50,000[1−1(1+0.06)40.06]50,000{\lbrack\frac{1-\frac1{{(1+0.06)}^4}}{0.06}\rbrack}50,000[0.061−(1+0.06)41​​] = $50,000 × 3.4651 = $173,255.28. Then, finthe PV of the annuity in toy’s llars (where FV is future value):PV0=FV(1+0.06)17=173,255.28(1+0.06)17PV_0=\frac{FV}{{(1+0.06)}^{17}}=\frac{173,255.28}{{(1+0.06)}^{17}}PV0​=(1+0.06)17FV​=(1+0.06)17173,255.28​PV0 = $64,340.85 ≈ $64,341. N=18, I/Y= 6, PMT=0, FV = 200000 这样哪里错了

2023-09-19 22:24 1 · 回答

NO.PZ2017092702000014问题如下Granarents are funng a newborn’s future university tuition costs, estimate$50,000/yefor four years, with the first payment e a lump sum in 18 years. Assuming a 6% effective annurate, the requireposit toy is closest to:A.$60,699.B.$64,341.C.$68,201.B is correct. First, finthe present value (PV) of ornary annuity in Ye17 threpresents the tuition costs: 50,000[1−1(1+0.06)40.06]50,000{\lbrack\frac{1-\frac1{{(1+0.06)}^4}}{0.06}\rbrack}50,000[0.061−(1+0.06)41​​] = $50,000 × 3.4651 = $173,255.28. Then, finthe PV of the annuity in toy’s llars (where FV is future value):PV0=FV(1+0.06)17=173,255.28(1+0.06)17PV_0=\frac{FV}{{(1+0.06)}^{17}}=\frac{173,255.28}{{(1+0.06)}^{17}}PV0​=(1+0.06)17FV​=(1+0.06)17173,255.28​PV0 = $64,340.85 ≈ $64,341.first payment e,这里的e不是先付吗?如果不是,那么 题干一般如何表达先付呢?

2023-08-21 16:57 1 · 回答

NO.PZ2017092702000014 问题如下 Granarents are funng a newborn’s future university tuition costs, estimate$50,000/yefor four years, with the first payment e a lump sum in 18 years. Assuming a 6% effective annurate, the requireposit toy is closest to: A.$60,699. B.$64,341. C.$68,201. B is correct. First, finthe present value (PV) of ornary annuity in Ye17 threpresents the tuition costs: 50,000[1−1(1+0.06)40.06]50,000{\lbrack\frac{1-\frac1{{(1+0.06)}^4}}{0.06}\rbrack}50,000[0.061−(1+0.06)41​​] = $50,000 × 3.4651 = $173,255.28. Then, finthe PV of the annuity in toy’s llars (where FV is future value):PV0=FV(1+0.06)17=173,255.28(1+0.06)17PV_0=\frac{FV}{{(1+0.06)}^{17}}=\frac{173,255.28}{{(1+0.06)}^{17}}PV0​=(1+0.06)17FV​=(1+0.06)17173,255.28​PV0 = $64,340.85 ≈ $64,341. 第一步, PMT=50000,N=4,I/Y=6,FV=0,算出PV,用算出的PV值再乘以(1+I/Y),这个就是后面要求的值的FV第二步,用上面最终求得的值作为FV,PMT=0,N=18,I/Y=6,求PV这里第二步的N是不是就应该用18来算?

2023-05-22 14:50 1 · 回答

NO.PZ2017092702000014问题如下Granarents are funng a newborn’s future university tuition costs, estimate$50,000/yefor four years, with the first payment e a lump sum in 18 years. Assuming a 6% effective annurate, the requireposit toy is closest to:A.$60,699.B.$64,341.C.$68,201.B is correct. First, finthe present value (PV) of ornary annuity in Ye17 threpresents the tuition costs: 50,000[1−1(1+0.06)40.06]50,000{\lbrack\frac{1-\frac1{{(1+0.06)}^4}}{0.06}\rbrack}50,000[0.061−(1+0.06)41​​] = $50,000 × 3.4651 = $173,255.28. Then, finthe PV of the annuity in toy’s llars (where FV is future value):PV0=FV(1+0.06)17=173,255.28(1+0.06)17PV_0=\frac{FV}{{(1+0.06)}^{17}}=\frac{173,255.28}{{(1+0.06)}^{17}}PV0​=(1+0.06)17FV​=(1+0.06)17173,255.28​PV0 = $64,340.85 ≈ $64,341.老师,学费不是都应该先付吗?这个不按照常识处理吗?另外,如果,18时点开始的payment 是先付,是不是答案就是C啊?,折到17年初,也就是16年末是173255。

2023-05-21 17:37 1 · 回答