开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

梦梦 · 2024年11月10日

追问蒙特卡洛模拟e的性质

NO.PZ2023091601000092

问题如下:

Consider a stock that pays no dividends, has a volatility of 25% per annum and an expected return of 13% per annum. Suppose that the current share price of the stock, S0, is USD 30. You decide to model the stock price behavior using a discrete-time version of geometric Brownian motion and to simulate paths of the stock price using Monte Carlo simulation. Let Δt denote the time interval used and let St denote the stock price at time interval t. So, according to your model,, whereεis a standard normal variable.

To implement this simulation, you generate a path of the stock price by starting at t = 0, generating a sample for ε updating the stock price according to the model, incrementing t by 1, and repeating this process until the end of the horizon is reached. Which of the following strategies for generating a sample forεwill implement this simulation properly?

选项:

A.

Generate a sample for ε by using the inverse of the standard normal cumulative distribution of a sample value drawn from a uniform distribution between 0 and 1.

B.

Generate a sample for ε by sampling from a normal distribution with mean 0.13 and standard deviation 0.25.

C.

Generate a sample for ε by using the inverse of the standard normal cumulative distribution of a sample value drawn from a uniform distribution between 0 and 1. Use Cholesky decomposition to correlate this sample with the sample from the previous time interval.

D.

Generate a sample for ε by sampling from a normal distribution with mean 0.13 and standard deviation 0.25. Use Cholesky decomposition to correlate this sample with the sample from the previous time interval.

解释:

Monte Carlo Simulation assumes independence across time so there is no need to correlate samples from time period to time period, eliminating c and d. Choice a describes a valid method for generating a sample from a standard normal distribution.

“因为正态分布的累积概率取值范围0-1,并且正态分布每一个分位点取到的概率是相同的,正态分布累积概率的反函数是0-1的均匀分布。”正态分布每一个分位点切割的面积是不同的,也就是概率应该是不同的呀?


您看我画的图对吗?是您解释的意思吗?

2 个答案
已采纳答案

pzqa27 · 2024年11月12日

嗨,从没放弃的小努力你好:


对的

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

pzqa27 · 2024年11月11日

嗨,努力学习的PZer你好:


这个从数学上可以证明

对于一个标准正态分布 N(0,1),累积分布函数(CDF) Φ(x)定义为, 它的值域是[0,1]

假设我们定义一个新的随机变量 U,让它等于正态分布的累积分布函数值

由于 X服从正态分布,那么通过计算 Φ(X) 得到的 U 就会服从 [0,1] 区间的均匀分布。这是因为正态分布的 CDF 是一个严格单调递增的函数,保证了每一个可能的 X 值都唯一对应一个 U 值。

此外,使用随机变量的分布性质,可以证明:

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

梦梦 · 2024年11月12日

我画的三个图都对吗

  • 2

    回答
  • 0

    关注
  • 25

    浏览
相关问题

NO.PZ2023091601000092问题如下 Consir a stothpays novin, ha volatility of 25% per annum anexpectereturn of 13% perannum. Suppose ththe current share priof the stock, S0, is US30. Youci to mol the stopribehavior using a screte-time version of geometricBrownimotion anto simulate paths of the stopriusing Monte Carlosimulation. Let Δt note the time intervuseanlet St note the stockpritime intervt. So, accorng to your mol,, whereεis a stanrormvariable.To implement thissimulation, you generate a path of the stopristarting t = 0,generating a sample for ε upting the stopriaccorng to the mol,incrementing t 1, anrepeating this process until the enof the horizon isreache Whiof the following strategies for generating a sample forεwill implementthis simulation properly? A.Generate a samplefor ε using the inverse of the stanrnormcumulative stribution of asample value awn from a uniform stribution between 0 an1. B.Generate a samplefor ε sampling from a normstribution with me0.13 anstanreviation 0.25. C.Generate a samplefor ε using the inverse of the stanrnormcumulative stribution of asample value awn from a uniform stribution between 0 an1. Use Choleskycomposition to correlate this sample with the sample from the previous timeinterval. Generate a samplefor ε sampling from a normstribution with me0.13 anstanreviation 0.25. Use Cholesky composition to correlate this sample with thesample from the previous time interval. Monte CarloSimulation assumes inpennacross time so there is no neeto correlatesamples from time perioto time perio eliminating c an Choiascribes a valimethofor generating a sample from a stanrnormalstribution. 老师好,绿色线的均匀分布和之前讲分布的均匀分布是一个概念吗?为什么正态分布/标准正态分布的反函数是均匀分布?

2024-08-15 15:07 3 · 回答

NO.PZ2023091601000092问题如下 Consir a stothpays novin, ha volatility of 25% per annum anexpectereturn of 13% perannum. Suppose ththe current share priof the stock, S0, is US30. Youci to mol the stopribehavior using a screte-time version of geometricBrownimotion anto simulate paths of the stopriusing Monte Carlosimulation. Let Δt note the time intervuseanlet St note the stockpritime intervt. So, accorng to your mol,, whereεis a stanrormvariable.To implement thissimulation, you generate a path of the stopristarting t = 0,generating a sample for ε upting the stopriaccorng to the mol,incrementing t 1, anrepeating this process until the enof the horizon isreache Whiof the following strategies for generating a sample forεwill implementthis simulation properly? A.Generate a samplefor ε using the inverse of the stanrnormcumulative stribution of asample value awn from a uniform stribution between 0 an1. B.Generate a samplefor ε sampling from a normstribution with me0.13 anstanreviation 0.25. C.Generate a samplefor ε using the inverse of the stanrnormcumulative stribution of asample value awn from a uniform stribution between 0 an1. Use Choleskycomposition to correlate this sample with the sample from the previous timeinterval. Generate a samplefor ε sampling from a normstribution with me0.13 anstanreviation 0.25. Use Cholesky composition to correlate this sample with thesample from the previous time interval. Monte CarloSimulation assumes inpennacross time so there is no neeto correlatesamples from time perioto time perio eliminating c an Choiascribes a valimethofor generating a sample from a stanrnormalstribution. 面一道题目中关于“Correlations among variables cincorporateinto a Monte Carlo simulation.“的表述是正确的,为什么这道题“Use Cholesky composition to correlate this sample with the sample from the previous time interval.“的表述是错误的?

2024-04-09 12:38 1 · 回答

NO.PZ2023091601000092 问题如下 Consir a stothpays novin, ha volatility of 25% per annum anexpectereturn of 13% perannum. Suppose ththe current share priof the stock, S0, is US30. Youci to mol the stopribehavior using a screte-time version of geometricBrownimotion anto simulate paths of the stopriusing Monte Carlosimulation. Let Δt note the time intervuseanlet St note the stockpritime intervt. So, accorng to your mol,, whereεis a stanrormvariable.To implement thissimulation, you generate a path of the stopristarting t = 0,generating a sample for ε upting the stopriaccorng to the mol,incrementing t 1, anrepeating this process until the enof the horizon isreache Whiof the following strategies for generating a sample forεwill implementthis simulation properly? A.Generate a samplefor ε using the inverse of the stanrnormcumulative stribution of asample value awn from a uniform stribution between 0 an1. B.Generate a samplefor ε sampling from a normstribution with me0.13 anstanreviation 0.25. C.Generate a samplefor ε using the inverse of the stanrnormcumulative stribution of asample value awn from a uniform stribution between 0 an1. Use Choleskycomposition to correlate this sample with the sample from the previous timeinterval. Generate a samplefor ε sampling from a normstribution with me0.13 anstanreviation 0.25. Use Cholesky composition to correlate this sample with thesample from the previous time interval. Monte CarloSimulation assumes inpennacross time so there is no neeto correlatesamples from time perioto time perio eliminating c an Choiascribes a valimethofor generating a sample from a stanrnormalstribution. 前面一道题目中关于“Correlations among variables cincorporateinto a Monte Carlo simulation.“的表述是正确的,为什么这道题“Use Cholesky composition to correlate this sample with the sample from the previous time interval.“的表述是错误的?

2023-10-17 10:12 1 · 回答