开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

游游 · 2024年11月04日

P = 88 * exp (-0.04 * 5) = 72.05 million.

NO.PZ2023091802000101

问题如下:

A portfolio manager controls USD 88 million par value of zero-coupon bonds maturing in 5 years and yielding 4%. The portfolio manager expects that interest rates will increase. To hedge the exposure, the portfolio manager wants to sell part of the 5-year bond position and use the proceeds from the sale to purchase zero-coupon bonds maturing in 1.5 years and yielding 3%. What is the market value of the 1.5-year bonds that the portfolio manager should purchase to reduce the duration on the combined position to 3 years? (Practice Exam)

选项:

A.

USD 41.17 million

B.

USD 43.06 million

C.

USD 43.28 million

D.

USD 50.28 million

解释:

In order to find the proper amount, we first need to calculate the current market value of the portfolio (P), which is:

P = 88 * exp (-0.04 * 5) = 72.05 million.

The desired portfolio duration (after the sale of the 5-year bond and purchase of the 1.5 year bond) can be expressed as:

[5 * (P-X) + 1.5* X]/P = 3 where X represents the market value of the zero-coupon bond with a maturity of 1.5 years.

This equation holds true when X = (4/7) * P, or 41.17 million.

算现值时为啥要用连续利率的方式算呢

1 个答案
已采纳答案

李坏_品职助教 · 2024年11月04日

嗨,努力学习的PZer你好:


这个其实不一定要用连续复利计算。用离散复利也是可以的。


P = 88 / (1+0.04)^5 = 72.33.


[5*(72.33 - X) + 1.5*X]/ 72.33 = 3,X= 41.33,最接近的选项是A。




----------------------------------------------
加油吧,让我们一起遇见更好的自己!

  • 1

    回答
  • 0

    关注
  • 35

    浏览
相关问题