开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Timedbean · 2024年10月27日

BSM model

NO.PZ2023091701000092

问题如下:

An at-the-money European call option on the DJ EURO STOXX 50 index with a strike of 2200 and maturing in 1 year is trading at EUR 350, where contract value is determined by EUR 10 per index point. The risk-free rate is 3% per year, and the daily volatility of the index is 2.05%. If we assume that the expected return on the DJ EURO STOXX 50 is 0%, the 99% 1-day VaR of a short position on a single call option calculated using the delta-normal approach is closest to:

选项:

A.EUR 8
B.EUR 53
C.EUR 84
D.EUR 525

解释:

Since the option is at-the-money, the delta is close to 0.5. Therefore a 1 point change in the index would translate to approximately 0.5 × EUR 10 = EUR 5 change in the call value. Therefore, the percent delta, also known as the local delta, defined as %D = (5/350) / (1/2200) = 31.4.

So the 99% VaR of the call option = %D × VaR(99% of index) = %D × call price × alpha (99%) × 1-day volatility = 31.4 × EUR 350 × 2.33 × 2.05% = EUR 525. The term alpha (99%) denotes the 99th percentile of a standard normal distribution, which equals 2.33.

There is a second way to compute the VaR. If we just use a conversion factor of EUR 10 on the index, then we can use the standard delta, instead of the percent delta:

VaR(99% of Call) = D × index price × conversion × alpha (99%) × 1-day volatility = 0.5 × 2200 × 10 × 2.33 × 2.05% = EUR 525, with some slight difference in rounding.

Both methods yield the same result.

这道题我尝试用BSM model来解可以吗

d1=[ln (so/x)+ (u+v^/2)T/(vT^0.5)


因为题目说是 at the money so=x

然后说expected return = 0, 所以u = 0

V 和T 都给了

我就算出来 d1=0.01025

所以N(d1) = 0.50399 = Delta


VaR option = |D|*VaR index



1 个答案

pzqa39 · 2024年10月27日

嗨,从没放弃的小努力你好:


虽然可以用BSM模型来计算出Delta值(接近0.5),但题目已经提供了“at-the-money”条件,并简化假设Delta接近0.5,所以无需完整地通过BSM公式计算。在这种情况下,用直接给出的Delta近似值(0.5)和题目中提供的计算方法,可以快速得出答案。

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

  • 1

    回答
  • 0

    关注
  • 49

    浏览
相关问题

NO.PZ2023091701000092问题如下 at-the-money Europecall option on the EUROSTOXX 50 inx with a strike of 2200 anmaturing in 1 yeis trang EUR350, where contravalue is termineEUR 10 per inx point. Therisk-free rate is 3% per year, anthe ily volatility of the inx is 2.05%.If we assume ththe expectereturn on the EURO STOXX 50 is 0%, the 99%1-y Vof a short position on a single call option calculateusing thelta-normapproais closest to: A.EUR 8B.EUR 53C.EUR 84EUR 525 Sinthe option isat-the-money, the lta is close to 0.5. Therefore a 1 point change in theinx woultranslate to approximately 0.5 × EUR 10 = EUR 5 change in the callvalue. Therefore, the percent ltalso known the locltfineas%= (5/350) / (1/2200) = 31.4. So the 99% Vof thecall option = %× VaR(99% of inx) = %× call pri× alpha (99%) × 1-yvolatility = 31.4 × EUR 350 × 2.33 × 2.05% = EUR 525. The term alpha (99%)notes the 99th percentile of a stanrnormstribution, whiequals2.33. There is a seconwayto compute the VaR. If we just use a conversion factor of EUR 10 on the inx,then we cuse the stanrltinsteof the percent ltVaR(99% of Call) = inx pri× conversion × alpha (99%) × 1-y volatility = 0.5 × 2200 × 10 ×2.33 × 2.05% = EUR 525, with some slight fferenin rounng. Both metho yielhe same result. with a strike of 2200,这里是点,不是金额对吧?contravalue is 10/inx,合约价值是一点10元,合约价值是什么意思?和学期权时的payoff=max(0,S-X)是一个意思吗?我看执行价格直接用2200乘以10了,是啥原理呢

2024-11-11 20:03 1 · 回答

NO.PZ2023091701000092问题如下 at-the-money Europecall option on the EUROSTOXX 50 inx with a strike of 2200 anmaturing in 1 yeis trang EUR350, where contravalue is termineEUR 10 per inx point. Therisk-free rate is 3% per year, anthe ily volatility of the inx is 2.05%.If we assume ththe expectereturn on the EURO STOXX 50 is 0%, the 99%1-y Vof a short position on a single call option calculateusing thelta-normapproais closest to: A.EUR 8B.EUR 53C.EUR 84EUR 525 Sinthe option isat-the-money, the lta is close to 0.5. Therefore a 1 point change in theinx woultranslate to approximately 0.5 × EUR 10 = EUR 5 change in the callvalue. Therefore, the percent ltalso known the locltfineas%= (5/350) / (1/2200) = 31.4. So the 99% Vof thecall option = %× VaR(99% of inx) = %× call pri× alpha (99%) × 1-yvolatility = 31.4 × EUR 350 × 2.33 × 2.05% = EUR 525. The term alpha (99%)notes the 99th percentile of a stanrnormstribution, whiequals2.33. There is a seconwayto compute the VaR. If we just use a conversion factor of EUR 10 on the inx,then we cuse the stanrltinsteof the percent ltVaR(99% of Call) = inx pri× conversion × alpha (99%) × 1-y volatility = 0.5 × 2200 × 10 ×2.33 × 2.05% = EUR 525, with some slight fferenin rounng. Both metho yielhe same result. 老师,1、现在是the money ,也就是option long的一方以执行价格买股票是赚钱的对吧?2、这里的option价格指的是option合约的价格还是option value?3、如果是option value,指的是min还是max?不管哪个,为什么是执行价格?4、题目只要没说明都默认欧式期权?

2024-09-04 21:57 3 · 回答