开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

徐威廉 · 2024年10月26日

WCL怎么确定的是99%就在1m 和 0m之间?

NO.PZ2024042601000038

问题如下:

Becky the Risk Analyst is trying to estimate the credit value at risk (CVaR) of a three-bond portfolio, where the CVaR is defined as the maximum unexpected loss at 99.0% confidence over a one-month horizon. The bonds are independent (i.e., no default correlation) and identical with a one-month forward value of $1.0 million each, a one-year cumulative default probability of 4.0%, and an assumed zero recovery rate. Which is nearest to the one-month 99.0% CVaR?

选项:

A.

$989,812

B.

$1.0 million

C.

$1.7 million

D.

$2.3 million

解释:

The one-month PD = 1 - (100% - 4%)(1/12) = 0.3396%.

Expected loss = 98.9846% × 0 + 1.0119% × $1.0 million + 0.0034% × $2.0 million + 0% × $3.0 million = $10,188

The probability of zero defaults = (1 - 0.3396%)3 = 98.98464%.

Therefore, the 99.0% WCL is one default or $1.0 million, and

the 99.0% CVaR = $1.0 million - $10,188 = $989,812.

WCL怎么确定的是99%就在1m 和 0m之间?怎么画的分布?

2 个答案
已采纳答案

pzqa27 · 2024年10月28日

嗨,从没放弃的小努力你好:


98.98464%.已经很接近99%, 那如果再累加上一个债券违约的概率,肯定超过99%了,所以根据保守性原则,选择1M作为WCL

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

徐威廉 · 2024年10月30日

98.98464%这个概率是0个债券违约的概率啊,这为什么是WCL的违约概率,WCL的违约概率应该是最差情景的3个债券全部违约PD=0%

pzqa27 · 2024年10月30日

嗨,爱思考的PZer你好:


WCL的算法是把损失从小到大累积到99%, 最小的情况就是没有债券违约,那么这种概率是98.98464%,第二小的是违约一个债券,累积违约概率超过了99%, 所以WCL 选1m

----------------------------------------------
努力的时光都是限量版,加油!

  • 2

    回答
  • 0

    关注
  • 37

    浏览
相关问题

NO.PZ2024042601000038问题如下 Becky the Risk Analyst is trying to estimate the cret value risk (CVaR) of a three-bonportfolio, where the CVis finethe maximum unexpecteloss 99.0% confinover a one-month horizon. The bon are inpennt (i.e., no fault correlation) aninticwith a one-month forwarvalue of $1.0 million each, a one-yecumulative fault probability of 4.0%, anassumezero recovery rate. Whiis nearest to the one-month 99.0% CVaR? A.$989,812B.$1.0 millionC.$1.7 million$2.3 million The one-month P= 1 - (100% - 4%)(1/12) = 0.3396%. Expecteloss = 98.9846% × 0 + 1.0119% × $1.0 million + 0.0034% × $2.0 million + 0% × $3.0 million = $10,188 The probability of zero faults = (1 - 0.3396%)3 = 98.98464%. Therefore, the 99.0% Wis one fault or $1.0 million, anthe 99.0% CV= $1.0 million - $10,188 = $989,812. 1.0119和0.0034是怎么算出来的

2024-10-20 22:52 1 · 回答

NO.PZ2024042601000038 问题如下 Becky the Risk Analyst is trying to estimate the cret value risk (CVaR) of a three-bonportfolio, where the CVis finethe maximum unexpecteloss 99.0% confinover a one-month horizon. The bon are inpennt (i.e., no fault correlation) aninticwith a one-month forwarvalue of $1.0 million each, a one-yecumulative fault probability of 4.0%, anassumezero recovery rate. Whiis nearest to the one-month 99.0% CVaR? A.$989,812 B.$1.0 million C.$1.7 million $2.3 million The one-month P= 1 - (100% - 4%)(1/12) = 0.3396%. Expecteloss = 98.9846% × 0 + 1.0119% × $1.0 million + 0.0034% × $2.0 million + 0% × $3.0 million = $10,188 The probability of zero faults = (1 - 0.3396%)3 = 98.98464%. Therefore, the 99.0% Wis one fault or $1.0 million, anthe 99.0% CV= $1.0 million - $10,188 = $989,812. Expecteloss = 98.9846% × 0 + 1.0119% × $1.0 million + 0.0034% × $2.0 million + 0% × $3.0 million = $10,188这个内容没太看懂

2024-10-20 21:02 2 · 回答

NO.PZ2024042601000038 问题如下 Becky the Risk Analyst is trying to estimate the cret value risk (CVaR) of a three-bonportfolio, where the CVis finethe maximum unexpecteloss 99.0% confinover a one-month horizon. The bon are inpennt (i.e., no fault correlation) aninticwith a one-month forwarvalue of $1.0 million each, a one-yecumulative fault probability of 4.0%, anassumezero recovery rate. Whiis nearest to the one-month 99.0% CVaR? A.$989,812 B.$1.0 million C.$1.7 million $2.3 million The one-month P= 1 - (100% - 4%)(1/12) = 0.3396%. Expecteloss = 98.9846% × 0 + 1.0119% × $1.0 million + 0.0034% × $2.0 million + 0% × $3.0 million = $10,188 The probability of zero faults = (1 - 0.3396%)3 = 98.98464%. Therefore, the 99.0% Wis one fault or $1.0 million, anthe 99.0% CV= $1.0 million - $10,188 = $989,812. 没看懂

2024-07-27 23:30 1 · 回答