开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

yanan · 2024年10月20日

解析的内容求解

NO.PZ2024042601000038

问题如下:

Becky the Risk Analyst is trying to estimate the credit value at risk (CVaR) of a three-bond portfolio, where the CVaR is defined as the maximum unexpected loss at 99.0% confidence over a one-month horizon. The bonds are independent (i.e., no default correlation) and identical with a one-month forward value of $1.0 million each, a one-year cumulative default probability of 4.0%, and an assumed zero recovery rate. Which is nearest to the one-month 99.0% CVaR?

选项:

A.

$989,812

B.

$1.0 million

C.

$1.7 million

D.

$2.3 million

解释:

The one-month PD = 1 - (100% - 4%)(1/12) = 0.3396%.

Expected loss = 98.9846% × 0 + 1.0119% × $1.0 million + 0.0034% × $2.0 million + 0% × $3.0 million = $10,188

The probability of zero defaults = (1 - 0.3396%)3 = 98.98464%.

Therefore, the 99.0% WCL is one default or $1.0 million, and

the 99.0% CVaR = $1.0 million - $10,188 = $989,812.

Expected loss = 98.9846% × 0 + 1.0119% × $1.0 million + 0.0034% × $2.0 million + 0% × $3.0 million = $10,188

这个内容没太看懂

2 个答案

pzqa27 · 2024年11月07日

嗨,努力学习的PZer你好:


不可以

----------------------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!

pzqa27 · 2024年10月21日

嗨,爱思考的PZer你好:


这个题就是一个很基础的Credit VaR计算。要算Credit VaR,无非算2个东西,一个是WCL,一个是EL

EL=PD*LGD*EAD,PD已经给出了,是4%,只是4%是年化的违约率,题目问的期限是1个月,所以月化的一个月的PD是0.3396%。

LGD=1-recovery rate, recovery rate给的是0,所以LGD=1

EAD也给了,每个债券是1m

EL=98.9846% × 0 + 1.0119% × $1.0 million + 0.0034% × $2.0 million + 0% × $3.0 million = $10,188,分别对应0个债券违约,1个债券违约,2个债券违约和3个债券违约的损失乘各自的违约率

然后是WCL的计算,WCL就先画损失分布,把损失从小到打排列,依次是0,1m,2m,3m

99%这个分位点对应在0和1m之间,因此根据谨慎性原则选一个较大的值,故取1m为WCL

最后Credit VaR=WCL-EL=1m- $10,188

----------------------------------------------
努力的时光都是限量版,加油!

Garfield · 2024年11月07日

PD月化计算可以直接除以12吗?

  • 2

    回答
  • 0

    关注
  • 159

    浏览
相关问题

NO.PZ2024042601000038 问题如下 Becky the Risk Analyst is trying to estimate the cret value risk (CVaR) of a three-bonportfolio, where the CVis finethe maximum unexpecteloss 99.0% confinover a one-month horizon. The bon are inpennt (i.e., no fault correlation) aninticwith a one-month forwarvalue of $1.0 million each, a one-yecumulative fault probability of 4.0%, anassumezero recovery rate. Whiis nearest to the one-month 99.0% CVaR? A.$989,812 B.$1.0 million C.$1.7 million $2.3 million The one-month P= 1 - (100% - 4%)(1/12) = 0.3396%. Expecteloss = 98.9846% × 0 + 1.0119% × $1.0 million + 0.0034% × $2.0 million + 0% × $3.0 million = $10,188 The probability of zero faults = (1 - 0.3396%)3 = 98.98464%. Therefore, the 99.0% Wis one fault or $1.0 million, anthe 99.0% CV= $1.0 million - $10,188 = $989,812. WCL怎么确定的是99%就在1m 和 0m之间?怎么画的分布?

2024-10-26 19:42 2 · 回答

NO.PZ2024042601000038问题如下 Becky the Risk Analyst is trying to estimate the cret value risk (CVaR) of a three-bonportfolio, where the CVis finethe maximum unexpecteloss 99.0% confinover a one-month horizon. The bon are inpennt (i.e., no fault correlation) aninticwith a one-month forwarvalue of $1.0 million each, a one-yecumulative fault probability of 4.0%, anassumezero recovery rate. Whiis nearest to the one-month 99.0% CVaR? A.$989,812B.$1.0 millionC.$1.7 million$2.3 million The one-month P= 1 - (100% - 4%)(1/12) = 0.3396%. Expecteloss = 98.9846% × 0 + 1.0119% × $1.0 million + 0.0034% × $2.0 million + 0% × $3.0 million = $10,188 The probability of zero faults = (1 - 0.3396%)3 = 98.98464%. Therefore, the 99.0% Wis one fault or $1.0 million, anthe 99.0% CV= $1.0 million - $10,188 = $989,812. 1.0119和0.0034是怎么算出来的

2024-10-20 22:52 1 · 回答

NO.PZ2024042601000038 问题如下 Becky the Risk Analyst is trying to estimate the cret value risk (CVaR) of a three-bonportfolio, where the CVis finethe maximum unexpecteloss 99.0% confinover a one-month horizon. The bon are inpennt (i.e., no fault correlation) aninticwith a one-month forwarvalue of $1.0 million each, a one-yecumulative fault probability of 4.0%, anassumezero recovery rate. Whiis nearest to the one-month 99.0% CVaR? A.$989,812 B.$1.0 million C.$1.7 million $2.3 million The one-month P= 1 - (100% - 4%)(1/12) = 0.3396%. Expecteloss = 98.9846% × 0 + 1.0119% × $1.0 million + 0.0034% × $2.0 million + 0% × $3.0 million = $10,188 The probability of zero faults = (1 - 0.3396%)3 = 98.98464%. Therefore, the 99.0% Wis one fault or $1.0 million, anthe 99.0% CV= $1.0 million - $10,188 = $989,812. 没看懂

2024-07-27 23:30 1 · 回答