开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Coco · 2024年10月14日

为什么还要求一个派

* 问题详情,请 查看题干

NO.PZ202208260100000801

问题如下:

Kleinert's analyst estimates a 50-50 chance that the price of SparCoin will either increase by 12% or decline by 10% at the put option's expiration date. Which of the following statements best describes the no-arbitrage option price implied by this assumption?

选项:

A.Since there is a 50% chance that the stock will fall to €94.73, there is a 50-50 chance of a €5.27 payout upon exercise and the no-arbitrage put is therefore worth €2.64 (= €5.27 / 2). B.Since there is a 50% chance that the stock will fall to €94.73, there is a 50-50 chance of a €5.27 payout upon exercise and given the risk-neutral probability of 0.47, the no-arbitrage put price is €2.48 (= €5.27 × 0.47). C.Since there is a 50% chance that the stock will fall to €94.73 and the risk-neutral probability is 0.47, the no-arbitrage put price is €2.78 (= €5.27 × {[1 – 0.47]/1.0037}).

解释:

Solution

C is correct.

A 12% increase in the stock price gives:

S1u=RuS0=1.12×105.25=117.88.

The put option will expire unexercised:

p1u=Max0, XS1u=Max0, 100117.88=0.

Alternatively, a 10% price decrease gives:

S1d=RdS0=0.9×105.25=94.73.

The put option will pay off:

p1d=Max1, XS1d=Max0, 10094.73=5.27.

To price this option, the risk-neutral pricing formula gives the risk-neutral probability π as:

π = (1 + 0.0037 − 0.9)/(1.12 − 0.9) = 0.47.

The no-arbitrage price is:


p0 = (0.47 × €0 + 0.53 × €5.27)/(1 + 0.0037) = €2.79/1.0037 = €2.78.

中文解析

本题考察的是使用二叉树对看跌期权进行定价。

题目比较常规,按照上面步骤计算即可。

为什么不能直接用题目里给的50-50概率的条件?

1 个答案
已采纳答案

李坏_品职助教 · 2024年10月14日

嗨,从没放弃的小努力你好:


题目说的那个50%的概率,只是这个人的预测概率。我们在二叉树模型里用的概率π,是风险中性概率,这个不是谁做的预测,是理想状态下的概率。

要用公式(1+rf - d)/(u-d)计算π。

----------------------------------------------
努力的时光都是限量版,加油!

  • 1

    回答
  • 0

    关注
  • 73

    浏览
相关问题