开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

qyang · 2024年08月15日

Macaulay Duration

No.PZ2021052101000006 (选择题)来源:

Suppose a single liability of EUR 250 million with the investment horizon of six years. We build a three-bond portfolio to earn a rate of return sufficient to pay off the obligation.

Exhibit 1 The Bond Portfolio to Immunize the Single Liability


The current date is 15 February 2017.

The portfolio Macaulay duration matches the investment horizon of six years. We can calculate the average Macaulay duration is (2.463 × 0.2355) + (6.316 × 0.4852) + (7.995 × 0.2793) = 5.8776.

There is difference between the portfolio Macaulay duration and the average Macaulay duration because:

您的回答B, 正确答案是: A

A

The yield curve is upwardly sloped

B

不正确The convexity of the 10-year bond is higher than the 2-year bond

C

This portfolio must be regularly rebalanced over the horizon to maintain the target duration


Correct Answer: A

Macaulay duration is the weighted average of the times to the receipt of cash flow, whereby the share of total market value for each date is the weight.

12.0008 is the Macaulay duration for the portfolio in terms of semiannual periods. Annualized, it is 6.0004 (= 12.0008/2). The portfolio Macaulay duration matches the investment horizon of six years.

The average Macaulay duration is (2.463 × 0.2355) + (6.316 × 0.4852) + (7.995 × 0.2793) = 5.8776.

When the yield curve is upwardly sloped, average duration (5.8776) is less than the portfolio duration (6.0004).



老师可以解释一下“12.0008 is the Macaulay duration for the portfolio in terms of semiannual periods. Annualized, it is 6.0004 (= 12.0008/2)” 吗?为什么半年是12,一年是6了呢?

1 个答案
已采纳答案

发亮_品职助教 · 2024年08月15日

因为Macaulay duration是现金流发生时间的加权平均。本题的债券是半年发生一次,6年期的债券一共会发生12次。

第一次发生的时间记为1,第二次发生的时间记为2,第三次记为3...以此类推。


假设第一笔现金流现值的权重是10%,第二笔现金流现值的权重是5%,第三笔现金流现值的圈子是9%....那么他的macaulay duration计算为:


时间1×10% + 时间2×5% + 时间3×9%...

即,每笔现金流发生时间,乘以这笔现金流现值的权重,然后加总就是Macaulay duration。


假设以上算出来等于12.0008,需要注意的是,在计算12.0008时,时间1是第一笔现金流的发生,我们是把他记为1,但是他却是在0.5年;同理,时间2是第二笔现金流的发生,我们只是把他记为2,但他却是在第1年;相当于在计算时间的平均数12.0008时,每个期限都放大了2倍。

所以,我们如果要年化的话,需要给12.0008除以2.


同理,如果一个债券是1个季度付息一次,1年付息4次。那么算出来的12.0008是被放大了4倍,年化处理的话需要用12.0008/4

  • 1

    回答
  • 0

    关注
  • 136

    浏览
相关问题