NO.PZ2022010601000004
问题如下:
A Singapore equity composite contains three portfolios whose cash flow weighting factors are as follows.
A Calculate the returns of Portfolio A, Portfolio B, and Portfolio C for the month of July using Modified Dietz formula.
B Calculate the July composite return by asset-weighting the individual portfolio returns using beginning-of-period values.
C Calculate the July composite return by asset-weighting the individual portfolio returns using a method that reflects both beginning-of-period values and external cash flows.
选项:
解释:
A Portfolio returns:
B To calculate the composite return based on beginning assets, f首先确定每个投资组合所代表的期初综合资产的百分比; 然后确定当月的加权平均回报::
Beginning composite assets =80 +130 + 115= 325
Portfolio A = 80÷325= 0.246 = 24.6%
Portfolio B = 130÷325= 0.4 = 40%
Portfolio C = 115÷325 = 0.354 = 35.4%
C To calculate the composite return based on beginning assets plus cash flows, 首先使用修正迪茨公式的分母来确定每个投资组合所代表的期初资产加上加权现金流量的百分比,然后计算加权平均回报:
Beginning composite assets + Weighted cash flows = [80 + (9 × 0.516)] + [130 + (−20 × 0.677) ] + [115+ (15 × 0.323)] = 84.64 + 116.46+ 119.85= 320.95
Portfolio A = 84.64÷320.95 = 0.264 = 26.4%
Portfolio B = 116.46÷320.95 = 0.363 = 36.3%
Portfolio C = 119.85÷320.95 = 0.373 = 37.3%
The Aggregate Return method 是将期初资产和期内外部现金流相加,将整个组合视为一个单一的投资组合,然后直接使用修正迪茨公式计算回报。.
为什么单一Portfolio的return计算不用时间加权分子,但是求composite的时候,分子需要?