开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

省略号 · 2024年03月31日

计算VND和CVA时的概率数值

* 问题详情,请 查看题干

NO.PZ202304070100009103

问题如下:

Ibarra performs the analysis assuming an upward-sloping yield curve and volatile interest rates. Exhibit 2 provides the data on annual payment benchmark government bonds. She uses this data to construct a binomial interest rate tree (shown in Exhibit 3) based on an assumption of future interest rate volatility of 20%.

Exhibit 3. One-Year Binomial Interest Rate Tree for 20% Volatility


As previously mentioned, Ibarra is considering a future interest rate volatility of 20% and an upward-sloping yield curve, as shown in Exhibit 2. Based on her analysis, the fair value of bond B2 is closest to:

选项:

A.

€1,101.24.

B.

€1,141.76.

C.

€1,144.63.

解释:

Correct Answer: A

The following tree shows the valuation assuming no default of bond B2, which pays a 6% annual coupon.


The scheduled year-end coupon and principal payments are placed to the right of each forward rate in the tree. For example, the Date 4 values are the principal plus the coupon of 60. The following are the four Date 3 values for the bond, shown above the interest rate at each node:

€1,060/1.080804 = €980.75

€1,060/1.054164 = €1,005.54

€1,060/1.036307 = €1,022.86

€1,060/1.024338 = €1,034.81

These are the three Date 2 values:


So, the value of the bond assuming no default (VND) is 1,144.63. This value could also have been obtained more directly using the benchmark discount factors from Exhibit 2:

€60 × 1.002506 + €60 × 0.985093 + €60 × 0.955848 + €1,060 × 0.913225 = €1,144.63.

The benefit of using the binomial interest rate tree to obtain the VND is that the same tree is used to calculate the expected exposure to default loss. The credit valuation adjustment table is now prepared following these steps:

Step 1: Compute the expected exposures as described in the following, using the binomial interest rate tree prepared earlier.

The expected exposure for Date 4 is €1,060.

The expected exposure for Date 3 is:

[(0.1250 × €980.75) + (0.3750 × €1,005.54) + (0.3750 × €1,022.86) + (0.1250 × €1,034.81)] + 60 = €1,072.60.

The expected exposure for Date 2 is:

[(0.25 × €1,008.76) + (0.50 × €1,043.43) + (0.25 × €1,067.73)] + €60 = €1,100.84.

The expected exposure for Date 1 is:

[(0.50 × €1,063.57) + (0.50 × €1,099.96)] + 60 = €1,141.76.

Step 2: LGD = Exposure × (1 – Recovery rate)

Step 3: The initial POD, also known as the hazard rate, is provided as 1.50%. For subsequent dates, POD is calculated as the hazard rate multiplied by the previous dates’ POS.

For example, to determine the Date 2 POD (1.4775%), the hazard rate (1.5000%) is multiplied by the Date 1 POS (98.5000%).

Step 4: POS is determined by subtracting the hazard rate from 100% and raising it to the power of the number of years:

(100% – 1.5000%)1 = 98.5000%

(100% – 1.5000%)2 = 97.0225%

(100% – 1.5000%)3 = 95.5672%

(100% – 1.5000%)4 = 94.1337%

Step 5: Expected loss = LGD × POD

Step 6: Discount factors (DF) in Year T are obtained from Exhibit 2.

Step 7: PV of expected loss = Expected loss × DF


Fair value of the bond considering CVA = €1,144.63 – CVA = €1,144.63 – €43.39 = €1,101.24.

在计算VND时每个时间节点使用的概率是0.5,而在计算CVA时时间节点概率不是用0.5呢?为什么两个概率使用的不一样?

1 个答案
已采纳答案

品职答疑小助手雍 · 2024年04月01日

同学你好,因为VND不考虑违约的情况,所以不用考虑违约概率。而CVA计算过程中是收了违约的情况影响的。

  • 1

    回答
  • 0

    关注
  • 408

    浏览
相关问题