开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

世纪之龙5 · 2024年03月05日

这题的是和95%VAR的95%无关是吗

NO.PZ2018122701000034

问题如下:

A bank conducted a backtest of its 95% daily value at risk (VaR) and observed 19 exceptions - i.e., the number of days where the daily P&L loss exceeded the VaR - over the last year which included 250 trading days (T = 250). If we use the normal distribution to approximate the binomial for purposes of model verification, what is our accept/reject opinion of the model under a 90% two-tailed test?

选项:

A.

Accept with a test statistic of 1.25

B.

Accept with a test statistic of 1.89

C.

Reject with a test statistic of 1.25

D.

Reject with a test statistic of 1.89

解释:

D is correct.

考点 Backtesting VaR

解析 Null hypothesis is H0: Model is good with E[exceptions] = (1 - 95%) × 250 = 12.5 exceptions

The standard error (standard deviation) of the binomial variable = SQRT[p(1-p)T] = SQRT(5% × 95% × 250) = 3.446

The test statistic is [19 - 12.5] / 3.446 = 1.89

In words, we observed 6.5 more exceptions (19 - 12.5) than expected if the model is good, which is 1.89 standard deviations away from the expected number of exceptions. Since we know that a 95% one-tailed normal confidence interval implies a 1.645 cutoff, we know that 1.645 is also the cutoff for a 90% two-tailed since the normal is symmetrical, this falls outside the acceptance region. We reject the null, assuming that luck does not explain this, and find the model faulty.

计算的5%和95%是显著性水平和置信区间是吗

世纪之龙5 · 2024年03月05日

假设题目换成99%VAR其他条件不变要怎么计算; 假设题目换成99%置信区间又要怎么计算

4 个答案
已采纳答案

pzqa27 · 2024年03月14日

嗨,努力学习的PZer你好:


这里你设置的VaR是99%,所以exception是1%*250

----------------------------------------------
努力的时光都是限量版,加油!

世纪之龙5 · 2024年03月16日

哦哦,就是var选的是例外个数,然后置信区间只和最终计算出来的值对比看看拒不拒绝这样是吗

pzqa27 · 2024年03月18日

嗨,努力学习的PZer你好:


是的,这里有2个置信区间,一个是VaR的用来算except days,另一个是假设检验的,是用来看模型是否符合要求的。

----------------------------------------------
努力的时光都是限量版,加油!

pzqa27 · 2024年03月08日

嗨,爱思考的PZer你好:


换成99%VAR也是[19 - 12.5] / 3.446 = 1.89这样?

不是啊

这里有2个置信区间,一个是VaR的,用来算except days,另一个是假设检验的,是用来看模型是否符合要求的,根据您的要求,您第一次问的时候是要改假设检验的置信区间,因此修改的地方的是拒绝域的位置,如果您要修改VaR的置信区间,那么需要重新计算except days。

这里是250天,那么exceptions就是1%*250=2.5

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

世纪之龙5 · 2024年03月14日

1%*250的1%是怎么来的

世纪之龙5 · 2024年03月16日

那根号下p*(1-p)的p是用var的那个百分比还是置信区间的百分比

pzqa27 · 2024年03月05日

嗨,努力学习的PZer你好:


计算的5%和95%是显著性水平和置信区间是吗

是的。

假设题目换成99%VAR其他条件不变要怎么计算; 假设题目换成99%置信区间又要怎么计算

计算过程是一样的,就是最后的比对要换一换,应该跟2.58进行对比即可。

----------------------------------------------
努力的时光都是限量版,加油!

世纪之龙5 · 2024年03月07日

换成99%VAR也是[19 - 12.5] / 3.446 = 1.89这样?

  • 4

    回答
  • 0

    关注
  • 194

    浏览
相关问题

NO.PZ2018122701000034 问题如下 A bank conctea backtest of its 95% ily value risk (VaR) anobserve19 exceptions - i.e., the number of ys where the ily P&L loss exceethe V- over the last yewhiinclu250 trang ys (T = 250). If we use the normstribution to approximate the binomifor purposes of mol verification, whis our accept/rejeopinion of the mol unr a 90% two-tailetest? Accept with a test statistic of 1.25 Accept with a test statistic of 1.89 Rejewith a test statistic of 1.25 Rejewith a test statistic of 1.89 is correct. 考点 : Backtesting V 解析 : Null hypothesis is H0: Mol is goowith E[exceptions] = (1 - 95%) × 250 = 12.5 exceptions The stanrerror (stanrviation) of the binomivariable = SQRT[p(1-p)T] = SQRT(5% × 95% × 250) = 3.446 The test statistic is [19 - 12.5] / 3.446 = 1.89 In wor, we observe6.5 more exceptions (19 - 12.5) thexpecteif the mol is goo whiis 1.89 stanrviations awfrom the expectenumber of exceptions. Sinwe know tha 95% one-tailenormconfinintervimplies a 1.645 cutoff, we know that 1.645 is also the cutoff for a 90% two-tailesinthe normis symmetrical, this falls outsi the acceptanregion. We rejethe null, assuming that lues not explain this, anfinthe mol faulty. 计算的是90%的情况,为什么用的均值和标准差是95%的?

2023-03-10 13:48 1 · 回答

NO.PZ2018122701000034问题如下 A bank conctea backtest of its 95% ily value risk (VaR) anobserve19 exceptions - i.e., the number of ys where the ily P&L loss exceethe V- over the last yewhiinclu250 trang ys (T = 250). If we use the normstribution to approximate the binomifor purposes of mol verification, whis our accept/rejeopinion of the mol unr a 90% two-tailetest? Accept with a test statistic of 1.25 Accept with a test statistic of 1.89 Rejewith a test statistic of 1.25 Rejewith a test statistic of 1.89 is correct. 考点 : Backtesting V 解析 : Null hypothesis is H0: Mol is goowith E[exceptions] = (1 - 95%) × 250 = 12.5 exceptions The stanrerror (stanrviation) of the binomivariable = SQRT[p(1-p)T] = SQRT(5% × 95% × 250) = 3.446 The test statistic is [19 - 12.5] / 3.446 = 1.89 In wor, we observe6.5 more exceptions (19 - 12.5) thexpecteif the mol is goo whiis 1.89 stanrviations awfrom the expectenumber of exceptions. Sinwe know tha 95% one-tailenormconfinintervimplies a 1.645 cutoff, we know that 1.645 is also the cutoff for a 90% two-tailesinthe normis symmetrical, this falls outsi the acceptanregion. We rejethe null, assuming that lues not explain this, anfinthe mol faulty. 请问老师19是哪里的来的呀

2022-12-23 11:40 1 · 回答

NO.PZ2018122701000034

2021-03-14 10:46 1 · 回答