开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Sean711822 · 2024年03月03日

看不懂这题在考什么?

NO.PZ2020010304000016

问题如下:

Suppose that the annual profit of two firms, one an incumbent (Big Firm, X1) and the other a startup (Small Firm, X2), can be described with the following probability matrix:

What are the conditional expected profit and conditional standard deviation of the profit of Big Firm when Small Firm either has no profit or loses money (X2 0)?

选项:

A.

3.01; 30.52

B.

3.01; 931

C.

1.03; 30.52

D.

1.03; 931.25

解释:

We need to compute the conditional distribution given X2 ≤ 0. The relevant rows of the probability matrix are

The conditional distribution can be constructed by summing across rows and then normalizing to sum to unity. The non-normalized sum and the normalized version are

Finally, the conditional expectation is E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = USD 3.01M.

The conditional expectation squared is E[X1^2|X2 ≤0]=940.31, and so

the conditional variance is V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25

and the conditional standard deviation is USD 30.52M.

normalize好像讲义里都没提到

2 个答案

pzqa39 · 2024年03月14日

嗨,爱思考的PZer你好:


回复尚晨同学,没有写错,(5.87%+27.43%+13.5%+3.09%)*X=100%,解得X=2.0044097。再用这个数字分别去乘。5.87%*2.0044097=11.77%,27.43%*2.0044097=54.98%,13.5%*2.0044097=27.06%,3.09%*2.0044097=6.19%,算出来就是normalized那列数据。

----------------------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!

pzqa39 · 2024年03月03日

嗨,爱思考的PZer你好:


non-normalized 就是概率直接相加,比如5.87%=1.97%+3.9%。normalize其实就是把non-normalized4个数等比例扩充到总概率等于100%就行了,假设一个扩大系数X,(5.87%+27.43%+13.5%+3.09%)*X=100%,求出来X,然后把这4个数分别乘以X就得到右边那列normalized数据了。

但是这道题虽然看起来很复杂,真正的考点是在得到解析的第二张图之后,主要只考了两个点:1、通过已知条件求条件概率,2、求方差的基本公式。

在解析第二张图的基础上:

E[X1|X2 ≤0]=-50*11.77%+0*54.98%+10*27.06%+100*6.19%=3.01

E[X1^2|X2 ≤0]是用-50,0,10,100分别取平方,然后再分别跟11.77%,54.98%,27.06%以及6.19%相乘,得到940.31

最后利用公式V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25得到方差,再开根号得到最后的结果。

----------------------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!

尚晨 · 2024年03月14日

第一段最后一句应该是5.87%除以X吧 是不是写错了 乘以的话怎么也算不出来normalized的那列数据啊

  • 2

    回答
  • 1

    关注
  • 537

    浏览
相关问题

NO.PZ2020010304000016 问题如下 Suppose ththe annuprofit of two firms, one incumbent (Big Firm, X1) anthe other a startup (Small Firm, X2), cscribewith the following probability matrix:Whare the contionexpecteprofit ancontionstanrviation of the profit of Big Firm when Small Firm either hno profit or loses money (X2 ≤ 0)? A.3.01; 30.52 B.3.01; 931 C.1.03; 30.52 1.03; 931.25 We neeto compute the contionstribution given X2 ≤ 0. The relevant rows of the probability matrix areThe contionstribution cconstructesumming across rows anthen normalizing to sum to unity. The non-normalizesum anthe normalizeversion areFinally, the contionexpectation is E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = US3.01M. The contionexpectation squareis E[X1^2|X2 ≤0]=940.31, ansothe contionvarianis V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25anthe contionstanrviation is US30.52M. 如题,我这样计算出的答案S30.43

2024-03-11 17:13 1 · 回答

NO.PZ2020010304000016问题如下Suppose ththe annuprofit of two firms, one incumbent (Big Firm, X1) anthe other a startup (Small Firm, X2), cscribewith the following probability matrix:Whare the contionexpecteprofit ancontionstanrviation of the profit of Big Firm when Small Firm either hno profit or loses money (X2 ≤ 0)?A.3.01; 30.52B.3.01; 931C.1.03; 30.521.03; 931.25 We neeto compute the contionstribution given X2 ≤ 0. The relevant rows of the probability matrix areThe contionstribution cconstructesumming across rows anthen normalizing to sum to unity. The non-normalizesum anthe normalizeversion areFinally, the contionexpectation is E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = US3.01M. The contionexpectation squareis E[X1^2|X2 ≤0]=940.31, ansothe contionvarianis V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25anthe contionstanrviation is US30.52M. E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = US3.01M根据公式算出来的是1.5050,是哪里有问题吗?

2024-02-18 23:50 2 · 回答

NO.PZ2020010304000016问题如下Suppose ththe annuprofit of two firms, one incumbent (Big Firm, X1) anthe other a startup (Small Firm, X2), cscribewith the following probability matrix:Whare the contionexpecteprofit ancontionstanrviation of the profit of Big Firm when Small Firm either hno profit or loses money (X2 ≤ 0)?A.3.01; 30.52B.3.01; 931C.1.03; 30.521.03; 931.25 We neeto compute the contionstribution given X2 ≤ 0. The relevant rows of the probability matrix areThe contionstribution cconstructesumming across rows anthen normalizing to sum to unity. The non-normalizesum anthe normalizeversion areFinally, the contionexpectation is E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = US3.01M. The contionexpectation squareis E[X1^2|X2 ≤0]=940.31, ansothe contionvarianis V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25anthe contionstanrviation is US30.52M.讲义sli 71关于contionexpectation的例题中,storeturn 三个概率加起来也是不到100。但是最后解contionexpectation时也是直接用题目中的概率。请问为什么这道题要Normalize?没搞懂,可以一下吗?

2024-01-17 13:14 1 · 回答

NO.PZ2020010304000016 问题如下 Suppose ththe annuprofit of two firms, one incumbent (Big Firm, X1) anthe other a startup (Small Firm, X2), cscribewith the following probability matrix:Whare the contionexpecteprofit ancontionstanrviation of the profit of Big Firm when Small Firm either hno profit or loses money (X2 ≤ 0)? A.3.01; 30.52 B.3.01; 931 C.1.03; 30.52 1.03; 931.25 We neeto compute the contionstribution given X2 ≤ 0. The relevant rows of the probability matrix areThe contionstribution cconstructesumming across rows anthen normalizing to sum to unity. The non-normalizesum anthe normalizeversion areFinally, the contionexpectation is E[X1|X2 ≤0] = Σx1Pr(X1 = x1|X2 ≤0) = US3.01M. The contionexpectation squareis E[X1^2|X2 ≤0]=940.31, ansothe contionvarianis V[X1] = E[X1^2] - E[X1]^2 =940.31-3.01^2=931.25anthe contionstanrviation is US30.52M. 本题考点为条件期望和条件标准差,涉及期望、标准差计算公式以及条件概率性质。计算步骤如下1、条件期望为 E[X1|X2 ≤0]= Σx1Pr(X1 = x1|X2 ≤0)= Σx1*[Pr(X1 = x1,X2 ≤0)/Pr(X2 ≤0)],依次带入X1取4个概率的数值计算。2、条件标准差为E[X1^2|X2 ≤0]- E[X1|X2 ≤0]^2,其中E[X1^2|X2 ≤0]=Σx1^2*Pr(X1 = x1|X2 ≤0)=Σx1^2*[Pr(X1 = x1,X2 ≤0)/Pr(X2 ≤0)];E[X1|X2 ≤0]^2为计算1的结果。想知道以上思路和计算过程是否正确;整个计算比较繁琐,容易出错,是否有更高效的计算方法?

2024-01-07 16:05 2 · 回答