开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

沪上小王子 · 2024年01月20日

此题的另类解法思考

NO.PZ2022122601000064

问题如下:

The SCI risk premium, equal to the SCI return minus the risk-free rate, denoted as SCIRP, is used as the dependent variable in a two-factor regression in which the independent variables are index returns minus the risk-free rate for the consumer credit industry (CCIRP) and the telecommunications industry (TELIRP). The regression results are in Exhibit 2.

Although volatility information is available from the SCI data and correspondingly for the SCIRP, Li’s team wants to determine the statistical relationship between the SCIRP and both the CCIRP and the TELIRP because forecasting the CCIRP and TELIRP is much less difficult than forecasting the SCIRP. After some discussion, the team believes that the volatility measure for the SCIRP data based on the volatility of CCIRP and TELIRP through the regression should be adjusted to incorporate a correlation coefficient of 0.25 between the CCIRP and TELIRP. Although the two index risk premiums were uncorrelated in the past and within the regression, Li’s team believes the two technologies will become more correlated in the future.

Based on the correlation that Li's team believes to exist between the CCIRP and TELIRP, the new volatility for the SCIRP is closest to:

选项:

A.

31.8%

B.56.4% C.49.1%

解释:

Correct Answer: B

Begin with: Var (M) = Var (F1)× (b1)2 + Var (F2) × (b2)2 + 2 × b1 × b2 × Cov (F1, F2) +Var (ε).

Find the variance of the error term using values from Exhibit 2:

0.2704 = 0.0784 × (1.020)2+ 0.1024 × (1.045)2 + 2 × 1.020 × 1.045 × 0 +Var (ε),Var (ε) = 0.0770.

The adjustment is stated as being a correlation of 0.25.

Change the correlation into a covariance:

Cov(F1,F2) = Corr(F1,F2) × Std Dev (F1) × Std Dev (F2)= 0.25 × (0.0784)^0.5 × (0.1024)^0.5 = 0.0224

The volatility of SCI after adjusting for the correlation is0.3181^0.5=56.4%

中文解析:

Var (M) = Var (F1)× (b1)2 +Var (F2) × (b2)2 + 2 × b1 × b2 × Cov (F1, F2) +Var (ε)。

使用表2中的值找到误差项的方差:

0.2704 = 0.0784××0.1024(1.020)2 +(1.045)2 + 2×1.020×1.045×0 + Var(ε),Var(ε)= 0.0770。

调整的相关系数为0.25。

将相关性转化为协方差:

Cov(F1,F2) = Corr(F1,F2) × Std Dev (F1) × Std Dev (F2)= 0.25 × (0.0784)^0.5 × (0.1024)^0.5 = 0.0224

经相关系数调整后的上证综指波动率为0.3181^0.5=56.4%

  1. 不需要计算残差项的方差,直接将题中给出的数据相乘计算出在ρ=0.25情况下,需要加到原有SCIRP方差上的新方差,具体计算如下:

2x1.02x1.045x0.25x(0.0784x0.1024)^0.5=0.047752

新方差=0.2704+0.047752=0.3181

标准差=0.3181^0.5=0.564

请问老师这种思考路径是否可以?


另外,题目中给出了三个index的mean值,并且老师讲解过程中还提到了R=α+∑biFi+残差,能否用mean值或“R=α+∑biFi+残差”去计算该题,如果可以,应该如何计算?

2 个答案

笛子_品职助教 · 2024年01月22日

嗨,爱思考的PZer你好:


老师,我的第二个问题也请帮助回答一下,谢谢。 题目中给出了三个index的mean值,并且老师讲解过程中还提到了R=α+∑biFi+残差,能否用mean值或“R=α+∑biFi+残差”去计算该题,如果可以,应该如何计算?


Hello,亲爱的同学~

这道题还是围绕公式:

Var (M) = Var (F1)× (b1)2 +Var (F2) × (b2)2 + 2 × b1 × b2 × Cov (F1, F2) +Var (ε)。来进行计算。

这个公式里,Var (M)是方差,Var (ε)是残差的方差(注意不是残差本身)。


老师看了一下,本题似乎,确实不能用mean值,或者R=α+∑biFi+残差 来解题。

mean值与R=α+∑biFi+残差,比较适合于做收益分析的场景。而本题是对风险(方差)进行分析。


----------------------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!

笛子_品职助教 · 2024年01月22日

嗨,从没放弃的小努力你好:


请问老师这种思考路径是否可以?

Hello,亲爱的同学~

这种思考方式是可以的。

这里是相关系数改变,从0变到0.25。

因此,用0.25去替代0就可以。

----------------------------------------------
就算太阳没有迎着我们而来,我们正在朝着它而去,加油!

  • 2

    回答
  • 0

    关注
  • 665

    浏览
相关问题

NO.PZ2022122601000064问题如下 The Srisk premium, equto the Sreturn minus the risk-freerate, noteSCIRP, is usethe pennt variable in a two-factorregression in whithe inpennt variables are inx returns minus therisk-free rate for the consumer cret instry (CCIRP) anthetelecommunications instry (TELIRP). The regression results are in Exhibit 2. Althoughvolatility information is available from the Sta ancorresponngly forthe SCIRP, Li’s tewants to termine the statisticrelationship betweenthe SCIRP anboth the CCIRP anthe TELIRP because forecasting the CCIRP anELIRP is muless fficult thforecasting the SCIRP. After somescussion, the tebelieves ththe volatility measure for the SCIRP tabaseon the volatility of CCIRP anTELIRP through the regression shoulbeausteto incorporate a correlation coefficient of 0.25 between the CCIRP anELIRP. Although the two inx risk premiums were uncorrelatein the past anithin the regression, Li’s tebelieves the two technologies will become morecorrelatein the future.Baseon thecorrelation thLi's tebelieves to exist between the CCIRP anTELIRP, thenew volatility for the SCIRP is closest to: A.31.8%B.56.4%C.49.1% CorreAnswer: B Begin with: Var(M) = V(F1)× (b1)2 + V(F2) ×(b2)2 + 2 × × × Cov (F1,F2) +V(ε).Finthe varianceof the error term using values from Exhibit 2:0.2704 = 0.0784 ×(1.020)2+ 0.1024 × (1.045)2 + 2 × 1.020 × 1.045 × 0 +Var(ε),V(ε) = 0.0770.The austment isstatebeing a correlation of 0.25.Change thecorrelation into a covariance: Cov(F1,F2)= Corr(F1,F2) × Stv (F1) × Stv (F2)=0.25 × (0.0784)^0.5 × (0.1024)^0.5 = 0.0224The volatility ofSafter austing for the correlation is0.3181^0.5=56.4% 中文解析V(M) = V(F1)× (b1)2 +V(F2) × (b2)2 + 2 × × × Cov (F1, F2) +V(ε)。使用表2中的值找到误差项的方差:0.2704 = 0.0784××0.1024(1.020)2 +(1.045)2 + 2×1.020×1.045×0 + Var(ε),Var(ε)= 0.0770。调整的相关系数为0.25。将相关性转化为协方差:Cov(F1,F2) = Corr(F1,F2) × Stv (F1) × Stv (F2)= 0.25 × (0.0784)^0.5 × (0.1024)^0.5 = 0.0224经相关系数调整后的上证综指波动率为0.3181^0.5=56.4% Volatility分不清是指方差,还是标准差

2024-08-08 22:00 1 · 回答

NO.PZ2022122601000064 问题如下 The Srisk premium, equto the Sreturn minus the risk-freerate, noteSCIRP, is usethe pennt variable in a two-factorregression in whithe inpennt variables are inx returns minus therisk-free rate for the consumer cret instry (CCIRP) anthetelecommunications instry (TELIRP). The regression results are in Exhibit 2. Althoughvolatility information is available from the Sta ancorresponngly forthe SCIRP, Li’s tewants to termine the statisticrelationship betweenthe SCIRP anboth the CCIRP anthe TELIRP because forecasting the CCIRP anELIRP is muless fficult thforecasting the SCIRP. After somescussion, the tebelieves ththe volatility measure for the SCIRP tabaseon the volatility of CCIRP anTELIRP through the regression shoulbeausteto incorporate a correlation coefficient of 0.25 between the CCIRP anELIRP. Although the two inx risk premiums were uncorrelatein the past anithin the regression, Li’s tebelieves the two technologies will become morecorrelatein the future.Baseon thecorrelation thLi's tebelieves to exist between the CCIRP anTELIRP, thenew volatility for the SCIRP is closest to: A.31.8% B.56.4% C.49.1% CorreAnswer: B Begin with: Var(M) = V(F1)× (b1)2 + V(F2) ×(b2)2 + 2 × × × Cov (F1,F2) +V(ε).Finthe varianceof the error term using values from Exhibit 2:0.2704 = 0.0784 ×(1.020)2+ 0.1024 × (1.045)2 + 2 × 1.020 × 1.045 × 0 +Var(ε),V(ε) = 0.0770.The austment isstatebeing a correlation of 0.25.Change thecorrelation into a covariance: Cov(F1,F2)= Corr(F1,F2) × Stv (F1) × Stv (F2)=0.25 × (0.0784)^0.5 × (0.1024)^0.5 = 0.0224The volatility ofSafter austing for the correlation is0.3181^0.5=56.4% 中文解析V(M) = V(F1)× (b1)2 +V(F2) × (b2)2 + 2 × × × Cov (F1, F2) +V(ε)。使用表2中的值找到误差项的方差:0.2704 = 0.0784××0.1024(1.020)2 +(1.045)2 + 2×1.020×1.045×0 + Var(ε),Var(ε)= 0.0770。调整的相关系数为0.25。将相关性转化为协方差:Cov(F1,F2) = Corr(F1,F2) × Stv (F1) × Stv (F2)= 0.25 × (0.0784)^0.5 × (0.1024)^0.5 = 0.0224经相关系数调整后的上证综指波动率为0.3181^0.5=56.4% 主要是开头这段The Srisk premium, equto the Sreturn minus the risk-free rate, noteSCIRP, is usethe pennt variable in a two-factor regression in whithe inpennt variables are inx returns minus the risk-free rate for the consumer cret instry (CCIRP) anthe telecommunications instry (TELIRP).

2024-08-07 01:50 2 · 回答

NO.PZ2022122601000064 问题如下 The Srisk premium, equto the Sreturn minus the risk-freerate, noteSCIRP, is usethe pennt variable in a two-factorregression in whithe inpennt variables are inx returns minus therisk-free rate for the consumer cret instry (CCIRP) anthetelecommunications instry (TELIRP). The regression results are in Exhibit 2. Althoughvolatility information is available from the Sta ancorresponngly forthe SCIRP, Li’s tewants to termine the statisticrelationship betweenthe SCIRP anboth the CCIRP anthe TELIRP because forecasting the CCIRP anELIRP is muless fficult thforecasting the SCIRP. After somescussion, the tebelieves ththe volatility measure for the SCIRP tabaseon the volatility of CCIRP anTELIRP through the regression shoulbeausteto incorporate a correlation coefficient of 0.25 between the CCIRP anELIRP. Although the two inx risk premiums were uncorrelatein the past anithin the regression, Li’s tebelieves the two technologies will become morecorrelatein the future.Baseon thecorrelation thLi's tebelieves to exist between the CCIRP anTELIRP, thenew volatility for the SCIRP is closest to: A.31.8% B.56.4% C.49.1% CorreAnswer: B Begin with: Var(M) = V(F1)× (b1)2 + V(F2) ×(b2)2 + 2 × × × Cov (F1,F2) +V(ε).Finthe varianceof the error term using values from Exhibit 2:0.2704 = 0.0784 ×(1.020)2+ 0.1024 × (1.045)2 + 2 × 1.020 × 1.045 × 0 +Var(ε),V(ε) = 0.0770.The austment isstatebeing a correlation of 0.25.Change thecorrelation into a covariance: Cov(F1,F2)= Corr(F1,F2) × Stv (F1) × Stv (F2)=0.25 × (0.0784)^0.5 × (0.1024)^0.5 = 0.0224The volatility ofSafter austing for the correlation is0.3181^0.5=56.4% 中文解析V(M) = V(F1)× (b1)2 +V(F2) × (b2)2 + 2 × × × Cov (F1, F2) +V(ε)。使用表2中的值找到误差项的方差:0.2704 = 0.0784××0.1024(1.020)2 +(1.045)2 + 2×1.020×1.045×0 + Var(ε),Var(ε)= 0.0770。调整的相关系数为0.25。将相关性转化为协方差:Cov(F1,F2) = Corr(F1,F2) × Stv (F1) × Stv (F2)= 0.25 × (0.0784)^0.5 × (0.1024)^0.5 = 0.0224经相关系数调整后的上证综指波动率为0.3181^0.5=56.4% Var的公式倒是会,但是求出Var(ε)是为了什么?求Cov(F1,F2) 又是为什么?最后的0.3181是怎么来的呢

2024-07-23 21:25 1 · 回答

NO.PZ2022122601000064 问题如下 The Srisk premium, equto the Sreturn minus the risk-freerate, noteSCIRP, is usethe pennt variable in a two-factorregression in whithe inpennt variables are inx returns minus therisk-free rate for the consumer cret instry (CCIRP) anthetelecommunications instry (TELIRP). The regression results are in Exhibit 2. Althoughvolatility information is available from the Sta ancorresponngly forthe SCIRP, Li’s tewants to termine the statisticrelationship betweenthe SCIRP anboth the CCIRP anthe TELIRP because forecasting the CCIRP anELIRP is muless fficult thforecasting the SCIRP. After somescussion, the tebelieves ththe volatility measure for the SCIRP tabaseon the volatility of CCIRP anTELIRP through the regression shoulbeausteto incorporate a correlation coefficient of 0.25 between the CCIRP anELIRP. Although the two inx risk premiums were uncorrelatein the past anithin the regression, Li’s tebelieves the two technologies will become morecorrelatein the future.Baseon thecorrelation thLi's tebelieves to exist between the CCIRP anTELIRP, thenew volatility for the SCIRP is closest to: A.31.8% B.56.4% C.49.1% CorreAnswer: B Begin with: Var(M) = V(F1)× (b1)2 + V(F2) ×(b2)2 + 2 × × × Cov (F1,F2) +V(ε).Finthe varianceof the error term using values from Exhibit 2:0.2704 = 0.0784 ×(1.020)2+ 0.1024 × (1.045)2 + 2 × 1.020 × 1.045 × 0 +Var(ε),V(ε) = 0.0770.The austment isstatebeing a correlation of 0.25.Change thecorrelation into a covariance: Cov(F1,F2)= Corr(F1,F2) × Stv (F1) × Stv (F2)=0.25 × (0.0784)^0.5 × (0.1024)^0.5 = 0.0224The volatility ofSafter austing for the correlation is0.3181^0.5=56.4% 中文解析V(M) = V(F1)× (b1)2 +V(F2) × (b2)2 + 2 × × × Cov (F1, F2) +V(ε)。使用表2中的值找到误差项的方差:0.2704 = 0.0784××0.1024(1.020)2 +(1.045)2 + 2×1.020×1.045×0 + Var(ε),Var(ε)= 0.0770。调整的相关系数为0.25。将相关性转化为协方差:Cov(F1,F2) = Corr(F1,F2) × Stv (F1) × Stv (F2)= 0.25 × (0.0784)^0.5 × (0.1024)^0.5 = 0.0224经相关系数调整后的上证综指波动率为0.3181^0.5=56.4% 计算如下0.0784x1.02^2+1.045^2x0.1.24+1.02x1.045x(0.0784x0.1024)^(0.5)x0.25+0.077=0.294和答案的0.3181对不上,但是计算步骤没有问题呀?

2024-02-13 11:46 1 · 回答