开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Maxy · 2023年10月12日

请问DF和PVofEL是怎么算出来的?

NO.PZ2019011002000001

问题如下:

Tim is a member of credit research team in a wealth management firm. The team is analyzing a set of bonds with some similar characteristics.

Bond A is a zero-coupon 5-year corporate bond with a par value of $1000. Tim believes that the risk-neutral probability of default (Hazard rate) for each date for the bond is 1.50%, and the recovery rate is 25%. Assume there is no interest rate volatility and the government bond yield curve is flat at 2%.

The market price of the bond A is $850, according to the information above the bond is:

选项:

A.

fairly value

B.

overvalued

C.

undervalued

解释:

C is correct

考点:考察对Credit risk计量,从而计算Fair value。

解析:

本题要按照常规步骤计算债券的Value。

第一步:用无风险利率进行折现,计算债券在每个时间点的价值。本题假设无风险利率没有波动为2%

经过计算Exposure为下图所示。

第二步:计算Recovery;Recovery = exposure × recovery rate,已知本题的Recovery rate为25%,可计算Recovery为下图所示。

第三步:计算Loss given default;

LGD=Exposure – recovery

第四步:计算Probability of default (POD);由题干已知the risk-neutral probability of default (Hazard rate) for each date for the bond is 1.50%;则第一期的POD为1.5%,随后每一期的POD,等于Hazard rate乘以上一期存活的概率即上一期POS。因此需要知道每一期的POS;每一期POS可知:

(100%-1.5%)1=98.5%

(100%-1.5%)2=97.0225%

(100%-1.5%)3=95.5672%

(100%-1.5%)4=94.1337%

(100%-1.5%)5=92.7217%

第六步:计算Expected loss;有Expected loss = LGD × POD

第七步:计算每一期的折现率,本题假设利率是恒定的2%;

第八步:计算Expected loss的现值,PV expected loss

通过用无风险利率折现该Bond得到的现值为:905.7308

则债券的合理价值为:905.7308 – 49.44 = 856.29

因此当前债券是相对被低估的。

另外,DF全称是?谢谢!

1 个答案

吴昊_品职助教 · 2023年10月12日

嗨,爱思考的PZer你好:


DF是指discount factor,也就是折现因子。本题假设利率是恒定的2%,所以第一期的折现因子就是1/1.02=0.9804;第二年的折现因子是1/(1.02^2)=0.9612;第三年的折现因子是1/(1.02^3)=0.9423

有了折现因子之后,expected loss×DF就可以得到PV of EL,比如第一期的PV of EL=10.3933×0.9804=10.1895,以此类推。

----------------------------------------------
努力的时光都是限量版,加油!

  • 1

    回答
  • 0

    关注
  • 413

    浏览
相关问题

NO.PZ2019011002000001 问题如下 Tim is a member of cret researtein a wealth management firm. The teis analyzing a set of bon with some similcharacteristics.BonA is a zero-coupon 5-yecorporate bonwith a pvalue of $1000. Tim believes ththe risk-neutrprobability of fault (Hazarrate) for eate for the bonis 1.50%, anthe recovery rate is 25%. Assume there is no interest rate volatility anthe government bonyielcurve is fl2%.The market priof the bonA is $850, accorng to the information above the bonis: A.fairly value B.overvalue C.unrvalue C is correct考点考察对Cret risk计量,从而计算Fair value。解析本题要按照常规步骤计算债券的Value。第一步用无风险利率进行折现,计算债券在每个时间点的价值。本题假设无风险利率没有波动为2%经过计算Exposure为下图所示。第二步计算Recovery;Recovery = exposure × recovery rate,已知本题的Recovery rate为25%,可计算Recovery为下图所示。第三步计算Loss given fault;LGExposure – recovery第四步计算Probability of fault (PO;由题干已知the risk-neutrprobability of fault (Hazarrate) for eate for the bonis 1.50%;则第一期的PO1.5%,随后每一期的PO等于Hazarrate乘以上一期存活的概率即上一期POS。因此需要知道每一期的POS;每一期POS可知(100%-1.5%)1=98.5%(100%-1.5%)2=97.0225%(100%-1.5%)3=95.5672%(100%-1.5%)4=94.1337%(100%-1.5%)5=92.7217%第六步计算Expecteloss;有Expecteloss = LG× PO七步计算每一期的折现率,本题假设利率是恒定的2%;第八步计算Expecteloss的现值,PV expecteloss通过用无风险利率折现该Bon到的现值为905.7308则债券的合理价值为905.7308 – 49.44 = 856.29因此当前债券是相对被低估的。 所以每一年用无风险利率算出来的吗

2024-05-30 16:06 1 · 回答

NO.PZ2019011002000001 问题如下 Tim is a member of cret researtein a wealth management firm. The teis analyzing a set of bon with some similcharacteristics.BonA is a zero-coupon 5-yecorporate bonwith a pvalue of $1000. Tim believes ththe risk-neutrprobability of fault (Hazarrate) for eate for the bonis 1.50%, anthe recovery rate is 25%. Assume there is no interest rate volatility anthe government bonyielcurve is fl2%.The market priof the bonA is $850, accorng to the information above the bonis: A.fairly value B.overvalue C.unrvalue C is correct考点考察对Cret risk计量,从而计算Fair value。解析本题要按照常规步骤计算债券的Value。第一步用无风险利率进行折现,计算债券在每个时间点的价值。本题假设无风险利率没有波动为2%经过计算Exposure为下图所示。第二步计算Recovery;Recovery = exposure × recovery rate,已知本题的Recovery rate为25%,可计算Recovery为下图所示。第三步计算Loss given fault;LGExposure – recovery第四步计算Probability of fault (PO;由题干已知the risk-neutrprobability of fault (Hazarrate) for eate for the bonis 1.50%;则第一期的PO1.5%,随后每一期的PO等于Hazarrate乘以上一期存活的概率即上一期POS。因此需要知道每一期的POS;每一期POS可知(100%-1.5%)1=98.5%(100%-1.5%)2=97.0225%(100%-1.5%)3=95.5672%(100%-1.5%)4=94.1337%(100%-1.5%)5=92.7217%第六步计算Expecteloss;有Expecteloss = LG× PO七步计算每一期的折现率,本题假设利率是恒定的2%;第八步计算Expecteloss的现值,PV expecteloss通过用无风险利率折现该Bon到的现值为905.7308则债券的合理价值为905.7308 – 49.44 = 856.29因此当前债券是相对被低估的。 算一遍需要挺多时间的,考试会考这种题吗

2024-04-05 14:11 1 · 回答

NO.PZ2019011002000001 问题如下 Tim is a member of cret researtein a wealth management firm. The teis analyzing a set of bon with some similcharacteristics.BonA is a zero-coupon 5-yecorporate bonwith a pvalue of $1000. Tim believes ththe risk-neutrprobability of fault (Hazarrate) for eate for the bonis 1.50%, anthe recovery rate is 25%. Assume there is no interest rate volatility anthe government bonyielcurve is fl2%.The market priof the bonA is $850, accorng to the information above the bonis: A.fairly value B.overvalue C.unrvalue C is correct考点考察对Cret risk计量,从而计算Fair value。解析本题要按照常规步骤计算债券的Value。第一步用无风险利率进行折现,计算债券在每个时间点的价值。本题假设无风险利率没有波动为2%经过计算Exposure为下图所示。第二步计算Recovery;Recovery = exposure × recovery rate,已知本题的Recovery rate为25%,可计算Recovery为下图所示。第三步计算Loss given fault;LGExposure – recovery第四步计算Probability of fault (PO;由题干已知the risk-neutrprobability of fault (Hazarrate) for eate for the bonis 1.50%;则第一期的PO1.5%,随后每一期的PO等于Hazarrate乘以上一期存活的概率即上一期POS。因此需要知道每一期的POS;每一期POS可知(100%-1.5%)1=98.5%(100%-1.5%)2=97.0225%(100%-1.5%)3=95.5672%(100%-1.5%)4=94.1337%(100%-1.5%)5=92.7217%第六步计算Expecteloss;有Expecteloss = LG× PO七步计算每一期的折现率,本题假设利率是恒定的2%;第八步计算Expecteloss的现值,PV expecteloss通过用无风险利率折现该Bon到的现值为905.7308则债券的合理价值为905.7308 – 49.44 = 856.29因此当前债券是相对被低估的。 t1的为什么是1/1.02的一次放?这时候距离到期t=5还有四段时间,不应该是1/1.02^4吗?

2023-11-09 21:59 1 · 回答

NO.PZ2019011002000001 这样做的答案是一样的 请教老师CVA类型的题目什么时候能这样做 什么时候不能呢?

2022-02-01 23:09 3 · 回答