开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

wenxing · 2023年05月27日

为啥不是三年的加起来2.933111只有两年的加起来,我看讲义都是所有时间的相加

* 问题详情,请 查看题干

NO.PZ202108100100000202

问题如下:

From the bank’s perspective, using data from Exhibit 1, the current value of the swap described in Exhibit 2 is closest to:

选项:

A.

-$2,951,963.

B.

-$1,849,897.

C.

-$1,943,000.

解释:

B is correct.

The value of a swap from the perspective of the receive-fixed (pay floating) party is calculated as

V=NA×FS0FSt×i=1nPViV=NA\times(FS_0-FS_t)\times{\textstyle\sum_{i=1}^n}PV_i

The swap has two years remaining until expiration. The sum of the present values for Years 1 and 2 is

i=1nPVi=0.990099+0.977876=1.967975\textstyle\sum_{i=1}^nPV_i=0.990099+0.977876=1.967975

Given the current equilibrium two-year swap rate of 1.12% and the fixed swap rate at initiation of 3.00%, the swap value per dollar notional is calculated as

V = 1×(0.03 – 0.0112) x 1.967975 = 0.036998

The current value of the swap, from the perspective of the receive-fixed party, is $50,000,000 × 0.036998 = $1,849,897.

From the perspective of the bank, as the pay-fixed party, the value of the swap is –$1,849,897.

中文解析:

本题是考察的是用重新定价法来求value。

对于本题中付固定端的一方,在利率上升时会有收益。

根据题干信息可知FS0=3%,即0时刻签订此合约,价格为3%,但过了一年后合约的价格为FS1=1.12%。即价格下跌了,因此会有损失,最后的结果为负。

另外注意折现因子的选取要注意使用的是1年和2年的折现因子,因为此时站在t=1时刻,还有两笔互换要发生,分别是在一年以后和两年以后,因此折现因子的选取要注意。

最后根据公式:V=NA×FS0FSt×i=1nPViV=NA\times(FS_0-FS_t)\times{\textstyle\sum_{i=1}^n}PV_i

带入即可求得t=1时刻的价值。

//////////////

1 个答案

Lucky_品职助教 · 2023年05月29日

嗨,从没放弃的小努力你好:


折现因子,是用来折现的,本题期限是2年,所以只需要两年的折现因子

The swap has two years remaining until expiration.

----------------------------------------------
努力的时光都是限量版,加油!

  • 1

    回答
  • 0

    关注
  • 233

    浏览
相关问题

NO.PZ202108100100000202 问题如下 From the bank’s perspective, using ta from Exhibit 1, the current value of the swscribein Exhibit 2 is closest to: A.-$2,951,963. B.-$1,849,897. C.-$1,943,000. B is correct. The value of a swfrom the perspective of the receive-fixe(pfloating) party is calculateasV=NA×(FS0−FSt)×∑i=1nPViV=NA\times(FS_0-FS_t)\times{\textstyle\sum_{i=1}^n}PV_iV=NA×(FS0​−FSt​)×∑i=1n​PVi​The swhtwo years remaining until expiration. The sum of the present values for Years 1 an2 is∑i=1nPVi=0.990099+0.977876=1.967975\textstyle\sum_{i=1}^nPV_i=0.990099+0.977876=1.967975∑i=1n​PVi​=0.990099+0.977876=1.967975Given the current equilibrium two-yeswrate of 1.12% anthe fixeswrate initiation of 3.00%, the swvalue per llnotionis calculateasV = 1×(0.03 – 0.0112) x 1.967975 = 0.036998The current value of the swap, from the perspective of the receive-fixeparty, is $50,000,000 × 0.036998 = $1,849,897.From the perspective of the bank, the pay-fixeparty, the value of the swis –$1,849,897. 中文解析本题是考察的是用重新定价法来求value。对于本题中付固定端的一方,在利率上升时会有收益。根据题干信息可知FS0=3%,即0时刻签订此合约,价格为3%,但过了一年后合约的价格为FS1=1.12%。即价格下跌了,因此会有损失,最后的结果为负。另外注意折现因子的选取要注意使用的是1年和2年的折现因子,因为此时站在t=1时刻,还有两笔互换要发生,分别是在一年以后和两年以后,因此折现因子的选取要注意。最后根据公式V=NA×(FS0−FSt)×∑i=1nPViV=NA\times(FS_0-FS_t)\times{\textstyle\sum_{i=1}^n}PV_iV=NA×(FS0​−FSt​)×∑i=1n​PVi​带入即可求得t=1时刻的价值。 T=3,现在t=1时刻,向下箭头往t时刻折现的时候为什么用的折现因子还是表1里面的1年和2年的折现因子?表格里的1/2/3年的折现因子不是t=0时刻的吗?

2024-08-29 15:17 1 · 回答

NO.PZ202108100100000202 问题如下 From the bank’s perspective, using ta from Exhibit 1, the current value of the swscribein Exhibit 2 is closest to: A.-$2,951,963. B.-$1,849,897. C.-$1,943,000. B is correct. The value of a swfrom the perspective of the receive-fixe(pfloating) party is calculateasV=NA×(FS0−FSt)×∑i=1nPViV=NA\times(FS_0-FS_t)\times{\textstyle\sum_{i=1}^n}PV_iV=NA×(FS0​−FSt​)×∑i=1n​PVi​The swhtwo years remaining until expiration. The sum of the present values for Years 1 an2 is∑i=1nPVi=0.990099+0.977876=1.967975\textstyle\sum_{i=1}^nPV_i=0.990099+0.977876=1.967975∑i=1n​PVi​=0.990099+0.977876=1.967975Given the current equilibrium two-yeswrate of 1.12% anthe fixeswrate initiation of 3.00%, the swvalue per llnotionis calculateasV = 1×(0.03 – 0.0112) x 1.967975 = 0.036998The current value of the swap, from the perspective of the receive-fixeparty, is $50,000,000 × 0.036998 = $1,849,897.From the perspective of the bank, the pay-fixeparty, the value of the swis –$1,849,897. 中文解析本题是考察的是用重新定价法来求value。对于本题中付固定端的一方,在利率上升时会有收益。根据题干信息可知FS0=3%,即0时刻签订此合约,价格为3%,但过了一年后合约的价格为FS1=1.12%。即价格下跌了,因此会有损失,最后的结果为负。另外注意折现因子的选取要注意使用的是1年和2年的折现因子,因为此时站在t=1时刻,还有两笔互换要发生,分别是在一年以后和两年以后,因此折现因子的选取要注意。最后根据公式V=NA×(FS0−FSt)×∑i=1nPViV=NA\times(FS_0-FS_t)\times{\textstyle\sum_{i=1}^n}PV_iV=NA×(FS0​−FSt​)×∑i=1n​PVi​带入即可求得t=1时刻的价值。 如题,用重新定价法,除了后两年的两笔NP*(1.12%-3%)*scount factor,时间点1应该也有(1.12%-3%)*NP现金流?为何不加入计算呢?

2023-08-24 14:39 1 · 回答

NO.PZ202108100100000202 问题如下 From the bank’s perspective, using ta from Exhibit 1, the current value of the swscribein Exhibit 2 is closest to: A.-$2,951,963. B.-$1,849,897. C.-$1,943,000. B is correct. The value of a swfrom the perspective of the receive-fixe(pfloating) party is calculateasV=NA×(FS0−FSt)×∑i=1nPViV=NA\times(FS_0-FS_t)\times{\textstyle\sum_{i=1}^n}PV_iV=NA×(FS0​−FSt​)×∑i=1n​PVi​The swhtwo years remaining until expiration. The sum of the present values for Years 1 an2 is∑i=1nPVi=0.990099+0.977876=1.967975\textstyle\sum_{i=1}^nPV_i=0.990099+0.977876=1.967975∑i=1n​PVi​=0.990099+0.977876=1.967975Given the current equilibrium two-yeswrate of 1.12% anthe fixeswrate initiation of 3.00%, the swvalue per llnotionis calculateasV = 1×(0.03 – 0.0112) x 1.967975 = 0.036998The current value of the swap, from the perspective of the receive-fixeparty, is $50,000,000 × 0.036998 = $1,849,897.From the perspective of the bank, the pay-fixeparty, the value of the swis –$1,849,897. 中文解析本题是考察的是用重新定价法来求value。对于本题中付固定端的一方,在利率上升时会有收益。根据题干信息可知FS0=3%,即0时刻签订此合约,价格为3%,但过了一年后合约的价格为FS1=1.12%。即价格下跌了,因此会有损失,最后的结果为负。另外注意折现因子的选取要注意使用的是1年和2年的折现因子,因为此时站在t=1时刻,还有两笔互换要发生,分别是在一年以后和两年以后,因此折现因子的选取要注意。最后根据公式V=NA×(FS0−FSt)×∑i=1nPViV=NA\times(FS_0-FS_t)\times{\textstyle\sum_{i=1}^n}PV_iV=NA×(FS0​−FSt​)×∑i=1n​PVi​带入即可求得t=1时刻的价值。 向上箭头为什么只有本金,没有1时间点的coupon?

2023-07-02 15:11 1 · 回答

NO.PZ202108100100000202问题如下 From the bank’s perspective, using ta from Exhibit 1, the current value of the swscribein Exhibit 2 is closest to: A.-$2,951,963.B.-$1,849,897.C.-$1,943,000. B is correct. The value of a swfrom the perspective of the receive-fixe(pfloating) party is calculateasV=NA×(FS0−FSt)×∑i=1nPViV=NA\times(FS_0-FS_t)\times{\textstyle\sum_{i=1}^n}PV_iV=NA×(FS0​−FSt​)×∑i=1n​PVi​The swhtwo years remaining until expiration. The sum of the present values for Years 1 an2 is∑i=1nPVi=0.990099+0.977876=1.967975\textstyle\sum_{i=1}^nPV_i=0.990099+0.977876=1.967975∑i=1n​PVi​=0.990099+0.977876=1.967975Given the current equilibrium two-yeswrate of 1.12% anthe fixeswrate initiation of 3.00%, the swvalue per llnotionis calculateasV = 1×(0.03 – 0.0112) x 1.967975 = 0.036998The current value of the swap, from the perspective of the receive-fixeparty, is $50,000,000 × 0.036998 = $1,849,897.From the perspective of the bank, the pay-fixeparty, the value of the swis –$1,849,897. 中文解析本题是考察的是用重新定价法来求value。对于本题中付固定端的一方,在利率上升时会有收益。根据题干信息可知FS0=3%,即0时刻签订此合约,价格为3%,但过了一年后合约的价格为FS1=1.12%。即价格下跌了,因此会有损失,最后的结果为负。另外注意折现因子的选取要注意使用的是1年和2年的折现因子,因为此时站在t=1时刻,还有两笔互换要发生,分别是在一年以后和两年以后,因此折现因子的选取要注意。最后根据公式V=NA×(FS0−FSt)×∑i=1nPViV=NA\times(FS_0-FS_t)\times{\textstyle\sum_{i=1}^n}PV_iV=NA×(FS0​−FSt​)×∑i=1n​PVi​带入即可求得t=1时刻的价值。 ,经过一年,swrate 定价下行,我理解是折线因子变化导致的,为何还能用一年前的第一年和第二年的折现因子呢?我在这里纠结了很久

2023-06-20 12:19 1 · 回答