开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

LHY · 2023年05月03日

请问这个call或者put行权与否怎么判断的?

NO.PZ2019010402000022

问题如下:

Based on the following information, the value of the European-style interest rate call option is:

Assume the notional amount of the option is $1,000,000, the exercise rate is 2.6% and the RN probability is 50%.

选项:

A.

2,368

B.

2,529

C.

3,675

解释:

B is correct.

考点:interest rate option估值

解析:

T=2:

c++ = Max(0,S++ – X) = Max[0,0.029833– 0.026] = 0.003833

c+– = Max(0,S+– – X) = Max[0,0.029378 – 0.026] = 0.003378

c  = Max(0,S  – X) = Max[0,0.015712 – 0.026] = 0.0

T=1:

c+=0.5×0.003833+0.5×0.0033781+2.9156%=0.003503c^+=\frac{0.5\times0.003833+0.5\times0.003378}{1+2.9156\%}=0.003503

c=0.5×0.003378+01+1.7632%=0.001660c^-=\frac{0.5\times0.003378+0}{1+1.7632\%}=0.001660

T=0:

c0=0.003503×0.5+0.001660×0.51+2.0689%=0.002529{\text{c}}_0=\frac{0.003503\times0.5+0.001660\times0.5}{1+2.0689\%}=0.002529

因为NP=1,000,000,所以call value=0.002529×1,000,000=2,529.17

在计算interest rate option value的时候,一定要特别注意折现率的选取。

请问这个call或者put行权与否怎么判断的?

1 个答案
已采纳答案

pzqa27 · 2023年05月04日

嗨,努力学习的PZer你好:


看价值,只有在价值比0大的时候才有可能行权,不过题目说的是欧式期权,那么在到期日来临前永远不能行权

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

  • 1

    回答
  • 0

    关注
  • 295

    浏览
相关问题

NO.PZ2019010402000022问题如下 Baseon the following information, the value of the European-style interest rate call option is:Assume the notionamount of the option is $1,000,000, the exercise rate is 2.6% anthe RN probability is 50%.A.2,368B.2,529C.3,675B is correct.考点interest rate option估值解析T=2:c++ = Max(0,S++ – X) = Max[0,0.029833– 0.026] = 0.003833c+– = Max(0,S+– – X) = Max[0,0.029378 – 0.026] = 0.003378– = Max(0,S– – – X) = Max[0,0.015712 – 0.026] = 0.0T=1:c+=0.5×0.003833+0.5×0.0033781+2.9156%=0.003503c^+=\frac{0.5\times0.003833+0.5\times0.003378}{1+2.9156\%}=0.003503c+=1+2.9156%0.5×0.003833+0.5×0.003378​=0.003503c−=0.5×0.003378+01+1.7632%=0.001660c^-=\frac{0.5\times0.003378+0}{1+1.7632\%}=0.001660c−=1+1.7632%0.5×0.003378+0​=0.001660T=0c0=0.003503×0.5+0.001660×0.51+2.0689%=0.002529{\text{c}}_0=\frac{0.003503\times0.5+0.001660\times0.5}{1+2.0689\%}=0.002529c0​=1+2.0689%0.003503×0.5+0.001660×0.5​=0.002529因为NP=1,000,000,所以call value=0.002529×1,000,000=2,529.17在计算interest rate option value的时候,一定要特别注意折现率的选取。这题我和另外一种题型混淆了 我是假设notional为100的浮动利率债券 从T2往前折现的 结果差很远 为什么不能用那个方法呢?

2024-04-13 00:22 1 · 回答

NO.PZ2019010402000022 问题如下 Baseon the following information, the value of the European-style interest rate call option is:Assume the notionamount of the option is $1,000,000, the exercise rate is 2.6% anthe RN probability is 50%. A.2,368 B.2,529 C.3,675 B is correct.考点interest rate option估值解析T=2:c++ = Max(0,S++ – X) = Max[0,0.029833– 0.026] = 0.003833c+– = Max(0,S+– – X) = Max[0,0.029378 – 0.026] = 0.003378– = Max(0,S– – – X) = Max[0,0.015712 – 0.026] = 0.0T=1:c+=0.5×0.003833+0.5×0.0033781+2.9156%=0.003503c^+=\frac{0.5\times0.003833+0.5\times0.003378}{1+2.9156\%}=0.003503c+=1+2.9156%0.5×0.003833+0.5×0.003378​=0.003503c−=0.5×0.003378+01+1.7632%=0.001660c^-=\frac{0.5\times0.003378+0}{1+1.7632\%}=0.001660c−=1+1.7632%0.5×0.003378+0​=0.001660T=0c0=0.003503×0.5+0.001660×0.51+2.0689%=0.002529{\text{c}}_0=\frac{0.003503\times0.5+0.001660\times0.5}{1+2.0689\%}=0.002529c0​=1+2.0689%0.003503×0.5+0.001660×0.5​=0.002529因为NP=1,000,000,所以call value=0.002529×1,000,000=2,529.17在计算interest rate option value的时候,一定要特别注意折现率的选取。 c+和不需要=max(0,s-x)吗?

2022-06-20 13:09 1 · 回答

NO.PZ2019010402000022问题如下Baseon the following information, the value of the European-style interest rate call option is:Assume the notionamount of the option is $1,000,000, the exercise rate is 2.6% anthe RN probability is 50%.A.2,368B.2,529C.3,675B is correct.考点interest rate option估值解析T=2:c++ = Max(0,S++ – X) = Max[0,0.029833– 0.026] = 0.003833c+– = Max(0,S+– – X) = Max[0,0.029378 – 0.026] = 0.003378– = Max(0,S– – – X) = Max[0,0.015712 – 0.026] = 0.0T=1:c+=0.5×0.003833+0.5×0.0033781+2.9156%=0.003503c^+=\frac{0.5\times0.003833+0.5\times0.003378}{1+2.9156\%}=0.003503c+=1+2.9156%0.5×0.003833+0.5×0.003378​=0.003503c−=0.5×0.003378+01+1.7632%=0.001660c^-=\frac{0.5\times0.003378+0}{1+1.7632\%}=0.001660c−=1+1.7632%0.5×0.003378+0​=0.001660T=0c0=0.003503×0.5+0.001660×0.51+2.0689%=0.002529{\text{c}}_0=\frac{0.003503\times0.5+0.001660\times0.5}{1+2.0689\%}=0.002529c0​=1+2.0689%0.003503×0.5+0.001660×0.5​=0.002529因为NP=1,000,000,所以call value=0.002529×1,000,000=2,529.17在计算interest rate option value的时候,一定要特别注意折现率的选取。如题 当时看视频的时候也注意到这个了

2022-06-11 11:36 1 · 回答

NO.PZ2019010402000022 这个利率两期看涨期权二叉树,给出来的话,是什么意思,我分不清这个现金流的问题,我算的话是 算出C++=2.9833%-2.6%=0.3833%,然后拿0.3833%/(1+2.9833%)=0.3722%,认为c++在t2时刻是=0.3722%, 但我这样算是错的, 答案是直接c++在t2==2.9833%-2.6%=0.3833% 疑问→为什么算c++不需要用t2的折现率去折现

2022-02-23 13:01 1 · 回答