开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

Lee13 · 2023年02月16日

A client invests €20,000 in a four-year certificate of deposit (CD) that annually pays interest of 3.5%. The annual CD interest payments are automatically reinvested in a separate savings account at a stated annual interest rate of 2% compounded monthly. At maturity, the value of the combined asset is closest to:

NO.PZ2017092702000019

问题如下:

A client invests €20,000 in a four-year certificate of deposit (CD) that annually pays interest of 3.5%. The annual CD interest payments are automatically reinvested in a separate savings account at a stated annual interest rate of 2% compounded monthly. At maturity, the value of the combined asset is closest to:

选项:

A.

€21,670.

B.

€22,890.

C.

€22,950.

解释:

B is correct,

as the following cash flows show:

The four annual interest payments are based on the CD’s 3.5% annual rate. The first payment grows at 2.0% compounded monthly for three years (where FV is future value): FVN = €700(1 +0.02/12 )3×12 FVN = 743.25 The second payment grows at 2.0% compounded monthly for two years: FVN = 700(1 +0.02/12 )2×12 FVN = 728.54 The third payment grows at 2.0% compounded monthly for one year: FVN = 700(1 +0.02/12 )1×12 FVN=714.13

The fourth payment is paid at the end of Year 4. Its future value is €700. The sum of all future value payments is as follows:

根据EAR的公式:(1+2%/12)^12=1+EAR,得到EAR=2.0184%。

然后:

1. 首先按照年金的方式来计算利息再投资的终值:N=4,I/Y=2.0184,PV=0,PMT=700,CPT FV=-2885.9208;其中700是20,000每年按照3.5%产生的利息,I/Y是转化的EAR,因为利息(PMT)的频率也是一年一付的。

2. 然后把期初的这20,000再加回去,得到22,885.92。(和选项B有写出入是因为四舍五入的问题,但不影响选出答案)

老师您好,这道题逻辑还是没弄清楚,烦请详细推导一下。还有可以直接用公式计算吗?公式怎么列呢?EAR在什么情况下需要计算,什么情况下可以直接用期利率,这类题型每回都不太懂怎么计算,谢谢!

3 个答案

星星_品职助教 · 2023年02月17日

回复提问3:

使用什么利率取决于具体题目。如果期间利率可以直接计算,则不需要转化。如果题目的计算要求以年度为单位,则可以考虑转化为EAR。

以本题为例,中文解析中已说明,转化为EAR的原因是PMT=700是年度现金流的概念,这种情况下,I/Y就必须也得是年利率。

核心原则是N、PMT、I/Y这三者的期间必须一致。

星星_品职助教 · 2023年02月17日

回复提问2:

年金的公式上课没讲过,统一都用计算器来计算。但如果将账户2中每年收到的700看成单一现金流,则可用公式逐一计算FV后再加总(英文解析的思路)。

以第一年末收到的首笔700为例,这笔现金流到第四年末时复利了三年。

如果直接以0.02/12这个月利率来计算,则一共复利了3年×12个月=36个月。写成公式为:

也可以将0.02的stated annual interest rate转化为EAR来计算,此时期间为年度,也就是复利了3年。这种方式写成公式后,实际形式和上面是完全一样的。

由此可得到首笔700的现金流复利三年后的终值为743.25。

同理,第二笔700(第二年末收到的700)到了第四年末复利了两年,第三笔700复利了一年,第四笔700就在第四年末。四笔700分别复利到第四年末的FV值如下图。此后加总,再加上账户1中不变的20,000。即可得到和计算器同样的答案。

星星_品职助教 · 2023年02月17日

同学你好,

这几个问题在中英文解析中已经全部涉及到,此后提问请具体标明是哪里没弄清楚/解析哪里不懂。

-------

回复提问1:

本题为第一个账户里可以产生每年3.5%的利息,即每年可以产生€20,000×3.5%=€700。这个利息要直接拿出去在第二个账户中以“2% compounded monthly”的利率进行投资。要求算出采用上述投资方式,资产在四年后一共会变成多少钱。

由于第一个账户中的€20,000产生了利息后就会被拿走,所以这个数字是一直不变的。变化的是每年都会在第二个账户中新增的700。对于第二个账户而言,相当于第一年末打入首个700,第二年末打入第二个700……以此类推。单独来看,账户2的现金流如下:

可以看出,这是一笔四年期,PMT为700的年金。进而通过N=4,I/Y=2.0184(转化的EAR),PV=0,PMT=700,得到 FV=-2885.9208(现金流符号只代表方向)。

再加上第一个账户中不变的€20,000,得到答案22,885.9208。选择近似的B选项。



  • 3

    回答
  • 0

    关注
  • 829

    浏览
相关问题

NO.PZ2017092702000019问题如下A client invests €20,000 in a four-yecertificate of posit (C thannually pays interest of 3.5%. The annuinterest payments are automatically reinvestein a separate savings account a stateannuinterest rate of 2% compounmonthly. maturity, the value of the combineasset is closest to:A.€21,670.B.€22,890.C.€22,950. B is correct, the following cash flows show:The four annuinterest payments are baseon the Cs 3.5% annurate. The first payment grows 2.0% compounmonthly for three years (where FV is future value): FVN = €700(1 +0.02/12 )3×12 FVN = 743.25 The seconpayment grows 2.0% compounmonthly for two years: FVN = €700(1 +0.02/12 )2×12 FVN = 728.54 The thirpayment grows 2.0% compounmonthly for one year: FVN = €700(1 +0.02/12 )1×12 FVN=714.13The fourth payment is paithe enof Ye4. Its future value is €700. The sum of all future value payments is follows:根据EAR的公式(1+2%/12)^12=1+EAR,得到EAR=2.0184%。然后1. 首先按照年金的方式来计算利息再投资的终值N=4,I/Y=2.0184,PV=0,PMT=700,CPT FV=-2885.9208;其中700是20,000每年按照3.5%产生的利息,I/Y是转化的EAR,因为利息(PMT)的频率也是一年一付的。2. 然后把期初的这20,000再加回去,得到22,885.92。(和B有写出入是因为四舍五入的问题,但不影响选出答案) 老师,2/12这个不是把月计的利率转成年计吗,和E的区别在哪?谢谢

2023-07-12 21:06 1 · 回答

NO.PZ2017092702000019 问题如下 A client invests €20,000 in a four-yecertificate of posit (C thannually pays interest of 3.5%. The annuinterest payments are automatically reinvestein a separate savings account a stateannuinterest rate of 2% compounmonthly. maturity, the value of the combineasset is closest to: A.€21,670. B.€22,890. C.€22,950. B is correct, the following cash flows show:The four annuinterest payments are baseon the Cs 3.5% annurate. The first payment grows 2.0% compounmonthly for three years (where FV is future value): FVN = €700(1 +0.02/12 )3×12 FVN = 743.25 The seconpayment grows 2.0% compounmonthly for two years: FVN = €700(1 +0.02/12 )2×12 FVN = 728.54 The thirpayment grows 2.0% compounmonthly for one year: FVN = €700(1 +0.02/12 )1×12 FVN=714.13The fourth payment is paithe enof Ye4. Its future value is €700. The sum of all future value payments is follows:根据EAR的公式(1+2%/12)^12=1+EAR,得到EAR=2.0184%。然后1. 首先按照年金的方式来计算利息再投资的终值N=4,I/Y=2.0184,PV=0,PMT=700,CPT FV=-2885.9208;其中700是20,000每年按照3.5%产生的利息,I/Y是转化的EAR,因为利息(PMT)的频率也是一年一付的。2. 然后把期初的这20,000再加回去,得到22,885.92。(和B有写出入是因为四舍五入的问题,但不影响选出答案) 这道题第一年的利息是700, 第二年的不应该是20700*0.035 = 724.5吗?这样的话,每一年的PMT就不是固定的700了。这个地方没太搞懂,希望老师解析一下,谢谢

2023-05-13 08:06 1 · 回答

NO.PZ2017092702000019 问题如下 A client invests €20,000 in a four-yecertificate of posit (C thannually pays interest of 3.5%. The annuinterest payments are automatically reinvestein a separate savings account a stateannuinterest rate of 2% compounmonthly. maturity, the value of the combineasset is closest to: A.€21,670. B.€22,890. C.€22,950. B is correct, the following cash flows show:The four annuinterest payments are baseon the Cs 3.5% annurate. The first payment grows 2.0% compounmonthly for three years (where FV is future value): FVN = €700(1 +0.02/12 )3×12 FVN = 743.25 The seconpayment grows 2.0% compounmonthly for two years: FVN = €700(1 +0.02/12 )2×12 FVN = 728.54 The thirpayment grows 2.0% compounmonthly for one year: FVN = €700(1 +0.02/12 )1×12 FVN=714.13The fourth payment is paithe enof Ye4. Its future value is €700. The sum of all future value payments is follows:根据EAR的公式(1+2%/12)^12=1+EAR,得到EAR=2.0184%。然后1. 首先按照年金的方式来计算利息再投资的终值N=4,I/Y=2.0184,PV=0,PMT=700,CPT FV=-2885.9208;其中700是20,000每年按照3.5%产生的利息,I/Y是转化的EAR,因为利息(PMT)的频率也是一年一付的。2. 然后把期初的这20,000再加回去,得到22,885.92。(和B有写出入是因为四舍五入的问题,但不影响选出答案) 我理解可以将利息的再投资作为年金来计算,但是我算的时候我直接使用的I/Y是2%/12因为是以一个月为期复利的,为什么不能用这个作为I/Y而是需要算它的EAR在带入计算器去算?

2023-05-04 18:35 1 · 回答

NO.PZ2017092702000019问题如下A client invests €20,000 in a four-yecertificate of posit (C thannually pays interest of 3.5%. The annuinterest payments are automatically reinvestein a separate savings account a stateannuinterest rate of 2% compounmonthly. maturity, the value of the combineasset is closest to:A.€21,670.B.€22,890.C.€22,950. B is correct, the following cash flows show:The four annuinterest payments are baseon the Cs 3.5% annurate. The first payment grows 2.0% compounmonthly for three years (where FV is future value): FVN = €700(1 +0.02/12 )3×12 FVN = 743.25 The seconpayment grows 2.0% compounmonthly for two years: FVN = €700(1 +0.02/12 )2×12 FVN = 728.54 The thirpayment grows 2.0% compounmonthly for one year: FVN = €700(1 +0.02/12 )1×12 FVN=714.13The fourth payment is paithe enof Ye4. Its future value is €700. The sum of all future value payments is follows:根据EAR的公式(1+2%/12)^12=1+EAR,得到EAR=2.0184%。然后1. 首先按照年金的方式来计算利息再投资的终值N=4,I/Y=2.0184,PV=0,PMT=700,CPT FV=-2885.9208;其中700是20,000每年按照3.5%产生的利息,I/Y是转化的EAR,因为利息(PMT)的频率也是一年一付的。2. 然后把期初的这20,000再加回去,得到22,885.92。(和B有写出入是因为四舍五入的问题,但不影响选出答案) 这题为什么不是把前三笔700求他们的FV PMT=700 PV=0 I/Y=2%/12 n=3*12 求FV 之后加20000+700 为啥这样不对呢

2023-04-24 21:32 1 · 回答

NO.PZ2017092702000019 问题如下 A client invests €20,000 in a four-yecertificate of posit (C thannually pays interest of 3.5%. The annuinterest payments are automatically reinvestein a separate savings account a stateannuinterest rate of 2% compounmonthly. maturity, the value of the combineasset is closest to: A.€21,670. B.€22,890. C.€22,950. B is correct, the following cash flows show:The four annuinterest payments are baseon the Cs 3.5% annurate. The first payment grows 2.0% compounmonthly for three years (where FV is future value): FVN = €700(1 +0.02/12 )3×12 FVN = 743.25 The seconpayment grows 2.0% compounmonthly for two years: FVN = €700(1 +0.02/12 )2×12 FVN = 728.54 The thirpayment grows 2.0% compounmonthly for one year: FVN = €700(1 +0.02/12 )1×12 FVN=714.13The fourth payment is paithe enof Ye4. Its future value is €700. The sum of all future value payments is follows:根据EAR的公式(1+2%/12)^12=1+EAR,得到EAR=2.0184%。然后1. 首先按照年金的方式来计算利息再投资的终值N=4,I/Y=2.0184,PV=0,PMT=700,CPT FV=-2885.9208;其中700是20,000每年按照3.5%产生的利息,I/Y是转化的EAR,因为利息(PMT)的频率也是一年一付的。2. 然后把期初的这20,000再加回去,得到22,885.92。(和B有写出入是因为四舍五入的问题,但不影响选出答案) 如题。

2023-04-23 22:21 1 · 回答