开发者:上海品职教育科技有限公司 隐私政策详情

应用版本:4.2.11(IOS)|3.2.5(安卓)APP下载

lynn666 · 2023年02月06日

题目中怎么看出来求得是当前的价格?

NO.PZ2018122701000073

问题如下:

For a 2-year zero-coupon bond, the 1-year rate is expected to remain at 5% for the first year. For the second year, it is foretasted the that 1-year spot rate will be either 7% or 3% at equal probability of 50%. If you are asked to reflect the convexity effect for this 2-year bond by Jensen’s inequality formula, which of the following inequalities is the best answer?

选项:

A.

$0.90736 > $0.90703.

B.

$0.90703 > $0.90000.

C.

$0.95238 > $0.90736.

D.

$0.95273 > $0.95238

解释:

A is correct.

考点:Jensen's inequality formula

解析:

不等式左边

E(11+r)=0.5×11.07+0.5×11.03=0.95273E(\frac1{1+r})=0.5\times\frac1{1.07}+0.5\times\frac1{1.03}=0.95273

0.95273/1.05 = 0.90736

不等式右边

$10.5×1.07+0.5×1.03=$11.05=0.95238\frac{\$1}{0.5\times1.07+0.5\times1.03}=\frac{\$1}{1.05}=0.95238

0.95238/1.05 = 0.90703

如题,怎么确定要不要再除以1.05%折现回0时刻呢?

2 个答案

李坏_品职助教 · 2023年02月06日

嗨,爱思考的PZer你好:


这个题是从原版书改过来的,原版书的说法如下:

这里用的也是折现到0时刻的现值,这样才是零息债券的价格,他用价格来表示inequality的不等式关系。其实不除以1.05也不影响inequality不等式,题目的本意是为了和原版书保持一致。

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

李坏_品职助教 · 2023年02月06日

嗨,努力学习的PZer你好:


题目里问的是 Jensen’s inequality formula,这个公式:

所以题目问的就是要我们尽量凑出来这个不等式左右两边的结果,来证明这个不等式是成立的。


左边是E[1/1+r],题目里说r要么是3%,要么是7%,所以是对(1/1+r) 这个整体求均值,概率各自都是50%。所以是50% * (1/1.07) + 50% * (1/1.03)。

右边是1/ E[1+r],等于是1/(1+r)的均值,分子是1,分母是1+r的均值。由于r要么是3%要么是7%,所以1+r的均值也就是50% * 1.03 + 50% *1.07,所以右边就是1/ (50% * 1.03 + 50% *1.07)


这就是完全按照jensen inequality的不等式来算的。

----------------------------------------------
虽然现在很辛苦,但努力过的感觉真的很好,加油!

lynn666 · 2023年02月06日

我通过jensen不等式算出了题目解析里的0.95273和0.95238这两个数。但是做题的时候就不确定要不要再除以1.05,怎么确定要不要再除以 1.05呢?

  • 2

    回答
  • 0

    关注
  • 292

    浏览
相关问题

NO.PZ2018122701000073 问题如下 For a 2-yezero-coupon bon the 1-yerate is expecteto remain 5% for the first year. For the seconyear, it is foretastethe th1-yespot rate will either 7% or 3% equprobability of 50%. If you are asketo reflethe convexity effefor this 2-yebonJensen’s inequality formulwhiof the following inequalities is the best answer? A.$0.90736 $0.90703. B.$0.90703 $0.90000. C.$0.95238 $0.90736. $0.95273 $0.95238 A is correct.考点Jensen's inequality formula解析不等式左边E(11+r)=0.5×11.07+0.5×11.03=0.95273E(\frac1{1+r})=0.5\times\frac1{1.07}+0.5\times\frac1{1.03}=0.95273E(1+r1​)=0.5×1.071​+0.5×1.031​=0.952730.95273/1.05 = 0.90736 不等式右边$10.5×1.07+0.5×1.03=$11.05=0.95238\frac{\$1}{0.5\times1.07+0.5\times1.03}=\frac{\$1}{1.05}=0.952380.5×1.07+0.5×1.03$1​=1.05$1​=0.952380.95238/1.05 = 0.90703 右边等式应该是 1/Er=1/E(1+r)但是 这1/E(1+r)应该怎么理解啊 李老师讲的时候我就没听懂 就是

2023-01-17 22:51 1 · 回答

NO.PZ2018122701000073 $0.90703 > $0.90000. $0.95238 > $0.90736. $0.95273 > $0.95238 A is correct. 考点Jensen's inequality formula 解析 不等式左边 E(11+r)=0.5×11.07+0.5×11.03=0.95273E(\frac1{1+r})=0.5\times\frac1{1.07}+0.5\times\frac1{1.03}=0.95273E(1+r1​)=0.5×1.071​+0.5×1.031​=0.95273 0.95273/1.05 = 0.90736 不等式右边 $10.5×1.07+0.5×1.03=$11.05=0.95238\frac{\$1}{0.5\times1.07+0.5\times1.03}=\frac{\$1}{1.05}=0.952380.5×1.07+0.5×1.03$1​=1.05$1​=0.95238 0.95238/1.05 = 0.90703 右侧 3%与7%平均是5% ,可否直接用5%作为第二年利率折现,这样更为简便 

2022-01-12 12:29 1 · 回答

$0.90703 > $0.90000. $0.95238 > $0.90736. $0.95273 > $0.95238 A is correct. 考点Jensen's inequality formula 解析 不等式左边 E(11+r)=0.5×11.07+0.5×11.03=0.95273E(\frac1{1+r})=0.5\times\frac1{1.07}+0.5\times\frac1{1.03}=0.95273E(1+r1​)=0.5×1.071​+0.5×1.031​=0.95273 0.95273/1.05 = 0.90736 不等式右边 $10.5×1.07+0.5×1.03=$11.05=0.95238\frac{\$1}{0.5\times1.07+0.5\times1.03}=\frac{\$1}{1.05}=0.952380.5×1.07+0.5×1.03$1​=1.05$1​=0.95238 0.95238/1.05 = 0.90703 为什么都需要再除以一个1.05呢?

2021-01-17 10:30 1 · 回答